Skip to content

API

The sfcgal module is the main module of PySFCGAL.

It contains the definition of every geometry classes, plus some I/O functions.

CoordinateSequence

Source code in pysfcgal/sfcgal.py
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
class CoordinateSequence:
    def __init__(self, parent):
        """Initialize the CoordinateSequence with a parent geometry.

        Parameters
        ----------
        parent : Geometry
            The parent geometry object that this sequence is associated with.
        """
        # keep reference to parent to avoid garbage collection
        self._parent = parent

    def __len__(self):
        """Return the number of coordinates in the sequence.

        Returns
        -------
        int
            The number of coordinates in the sequence.
        """
        return self._parent.__len__()

    def __iter__(self):
        """Iterate over the coordinates in the sequence.

        Yields
        ------
        tuple
            A tuple representing the coordinates of each point.
        """
        length = self.__len__()
        for n in range(0, length):
            yield self.__get_coord_n(n)

    def __get_coord_n(self, n):
        """Returns the n-th coordinate within the sequence.

        This method makes the assumption that the index is valid for the geometry.

        Parameters
        ----------
        n : int
            Index of the coordinate to recover.

        Returns
        -------
        tuple
            A tuple representing the coordinates of the point at index n.
        """
        point_n = lib.sfcgal_linestring_point_n(self._parent._geom, n)
        return Point.from_sfcgal_geometry(point_n, owned=False).to_coordinates()

    def __getitem__(self, key):
        """Get a coordinate (or several) within the sequence, identified through an
        index or a slice.

        Raises an IndexError if the key is invalid for the geometry.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the coordinate(s) to recover.

        Returns
        -------
        tuple or list of tuples
            The coordinate(s) at the specified index or slice.
        """
        length = self.__len__()
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_coord_n(index)
        elif isinstance(key, slice):
            geoms = [self.__get_coord_n(index) for index in range(*key.indices(length))]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

__get_coord_n(n)

Returns the n-th coordinate within the sequence.

This method makes the assumption that the index is valid for the geometry.

Parameters:

Name Type Description Default
n int

Index of the coordinate to recover.

required

Returns:

Type Description
tuple

A tuple representing the coordinates of the point at index n.

Source code in pysfcgal/sfcgal.py
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
def __get_coord_n(self, n):
    """Returns the n-th coordinate within the sequence.

    This method makes the assumption that the index is valid for the geometry.

    Parameters
    ----------
    n : int
        Index of the coordinate to recover.

    Returns
    -------
    tuple
        A tuple representing the coordinates of the point at index n.
    """
    point_n = lib.sfcgal_linestring_point_n(self._parent._geom, n)
    return Point.from_sfcgal_geometry(point_n, owned=False).to_coordinates()

__getitem__(key)

Get a coordinate (or several) within the sequence, identified through an index or a slice.

Raises an IndexError if the key is invalid for the geometry.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the coordinate(s) to recover.

required

Returns:

Type Description
tuple or list of tuples

The coordinate(s) at the specified index or slice.

Source code in pysfcgal/sfcgal.py
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
def __getitem__(self, key):
    """Get a coordinate (or several) within the sequence, identified through an
    index or a slice.

    Raises an IndexError if the key is invalid for the geometry.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the coordinate(s) to recover.

    Returns
    -------
    tuple or list of tuples
        The coordinate(s) at the specified index or slice.
    """
    length = self.__len__()
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_coord_n(index)
    elif isinstance(key, slice):
        geoms = [self.__get_coord_n(index) for index in range(*key.indices(length))]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(parent)

Initialize the CoordinateSequence with a parent geometry.

Parameters:

Name Type Description Default
parent Geometry

The parent geometry object that this sequence is associated with.

required
Source code in pysfcgal/sfcgal.py
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
def __init__(self, parent):
    """Initialize the CoordinateSequence with a parent geometry.

    Parameters
    ----------
    parent : Geometry
        The parent geometry object that this sequence is associated with.
    """
    # keep reference to parent to avoid garbage collection
    self._parent = parent

__iter__()

Iterate over the coordinates in the sequence.

Yields:

Type Description
tuple

A tuple representing the coordinates of each point.

Source code in pysfcgal/sfcgal.py
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
def __iter__(self):
    """Iterate over the coordinates in the sequence.

    Yields
    ------
    tuple
        A tuple representing the coordinates of each point.
    """
    length = self.__len__()
    for n in range(0, length):
        yield self.__get_coord_n(n)

__len__()

Return the number of coordinates in the sequence.

Returns:

Type Description
int

The number of coordinates in the sequence.

Source code in pysfcgal/sfcgal.py
2258
2259
2260
2261
2262
2263
2264
2265
2266
def __len__(self):
    """Return the number of coordinates in the sequence.

    Returns
    -------
    int
        The number of coordinates in the sequence.
    """
    return self._parent.__len__()

DimensionError

Bases: Exception

Indicates a dimension error, e.g. requesting for the Z coordinates in a 2D-point.

Source code in pysfcgal/sfcgal.py
53
54
55
56
57
class DimensionError(Exception):
    """Indicates a dimension error, e.g. requesting for the Z coordinates in
    a 2D-point."""

    pass

Geometry

Geometry mother class, from which every other geometry class inheritates.

It defines a large bunch of methods that are shared along every geometries.

Attributes:

Name Type Description
_owned bool, default True

If True, the Python geometry owns the low-level SFCGAL geometry, which is removed when the Python structure is cleaned by the garbage collector.

_geom _CDatabase

SFCGAL geometry associated to the Python Geometry. The operations on the geometry are done at the SFCGAL lower level.

Source code in pysfcgal/sfcgal.py
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
class Geometry:
    """Geometry mother class, from which every other geometry class inheritates.

    It defines a large bunch of methods that are shared along every geometries.

    Attributes
    ----------
    _owned : bool, default True
        If True, the Python geometry owns the low-level SFCGAL geometry, which is
        removed when the Python structure is cleaned by the garbage collector.

    _geom : _cffi_backend._CDatabase
        SFCGAL geometry associated to the Python Geometry. The operations on the
        geometry are done at the SFCGAL lower level.

    """
    _geom: ffi.CData
    _owned = True

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def distance(self, other: Geometry) -> float:
        """
        Compute the 2D Euclidean distance between this geometry and another geometry.

        Parameters
        ----------
        other : Geometry
            The other geometry object to compute the distance to.

        Returns
        -------
        float
            The 2D Euclidean distance between the two geometries.
        """
        return lib.sfcgal_geometry_distance(self._geom, other._geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def distance_3d(self, other: Geometry) -> float:
        """
        Compute the 3D Euclidean distance between this geometry and another geometry.

        Parameters
        ----------
        other : Geometry
            The other geometry object to compute the 3D distance to.

        Returns
        -------
        float
            The 3D Euclidean distance between the two geometries.
        """
        return lib.sfcgal_geometry_distance_3d(self._geom, other._geom)

    @property
    @cond_icontract(lambda self: self.is_valid(), "require")
    def area(self) -> float:
        """
        Return the area of the geometry.

        This property returns the area of the geometry, applicable
        for surfaces like polygons.

        Returns
        -------
        float
            The area of the geometry.
        """
        return lib.sfcgal_geometry_area(self._geom)

    @property
    def is_empty(self) -> bool:
        """
        Check if the geometry is empty.

        Returns
        -------
        bool
            True if the geometry is empty, False otherwise.
        """
        return lib.sfcgal_geometry_is_empty(self._geom)

    @property
    def has_z(self) -> bool:
        """
        Check if the geometry has a Z component (3D geometry).

        Returns
        -------
        bool
            True if the geometry has a Z component, False otherwise.
        """
        return lib.sfcgal_geometry_is_3d(self._geom) == 1

    @property
    def has_m(self) -> bool:
        """
        Check if the geometry is measured (has an 'M' value).

        Returns
        -------
        bool
            True if the geometry is measured, False otherwise.
        """
        return lib.sfcgal_geometry_is_measured(self._geom) == 1

    @property
    def geom_type(self) -> str:
        """
        Return the type of the geometry as a string.

        Returns
        -------
        str
            The geometry type as a string (e.g., 'Point', 'Polygon').
        """
        return geom_types_r[lib.sfcgal_geometry_type_id(self._geom)]

    @cond_icontract(lambda self: self.is_valid(), "require")
    def area_3d(self) -> float:
        """
        Return the 3D area of the geometry.

        Returns
        -------
        float
            The 3D area of the geometry.
        """
        return lib.sfcgal_geometry_area_3d(self._geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def volume(self) -> float:
        """
        Return the volume of the geometry.

        Returns
        -------
        float
            The volume of the geometry.
        """
        return lib.sfcgal_geometry_volume(self._geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def convexhull(self) -> Optional[Geometry]:
        """
        Compute the 2D convex hull of the geometry.

        Returns
        -------
        Geometry
            The convex hull of the geometry.
        """
        geom = lib.sfcgal_geometry_convexhull(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def convexhull_3d(self) -> Optional[Geometry]:
        """
        Compute the 3D convex hull of the geometry.

        Returns
        -------
        Geometry
            The 3D convex hull of the geometry.
        """
        geom = lib.sfcgal_geometry_convexhull_3d(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def difference(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the difference between this geometry and another in 2D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the difference with.

        Returns
        -------
        Geometry
            The resulting geometry after computing the difference.
        """
        geom = lib.sfcgal_geometry_difference(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def difference_3d(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the difference between this geometry and another in 3D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the 3D difference with.

        Returns
        -------
        Geometry
            The resulting 3D geometry after computing the difference.
        """
        geom = lib.sfcgal_geometry_difference_3d(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid(), "require")
    def intersects(self, other: Geometry) -> bool:
        """
        Check if this geometry intersects with another geometry in 2D.

        Parameters
        ----------
        other : Geometry
            The other geometry to check intersection with.

        Returns
        -------
        bool
            True if the geometries intersect, False otherwise.
        """
        return lib.sfcgal_geometry_intersects(self._geom, other._geom) == 1

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def intersects_3d(self, other: Geometry) -> bool:
        """
        Check if this geometry intersects with another geometry in 3D.

        Parameters
        ----------
        other : Geometry
            The other geometry to check intersection with.

        Returns
        -------
        bool
            True if the geometries intersect in 3D, False otherwise.
        """
        return lib.sfcgal_geometry_intersects_3d(self._geom, other._geom) == 1

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def intersection(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the intersection of this geometry and another in 2D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the intersection with.

        Returns
        -------
        Geometry
            The resulting geometry after the intersection operation.
        """
        geom = lib.sfcgal_geometry_intersection(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def intersection_3d(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the intersection of this geometry and another in 3D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the 3D intersection with.

        Returns
        -------
        Geometry
            The resulting geometry after the 3D intersection operation.
        """
        geom = lib.sfcgal_geometry_intersection_3d(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def union(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the union of this geometry and another in 2D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the union with.

        Returns
        -------
        Geometry
            The resulting geometry after the union operation.
        """
        geom = lib.sfcgal_geometry_union(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def union_3d(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the union of this geometry and another in 3D.

        Parameters
        ----------
        other : Geometry
            The other geometry to compute the 3D union with.

        Returns
        -------
        Geometry
            The resulting 3D geometry after the union operation.
        """
        geom = lib.sfcgal_geometry_union_3d(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def covers(self, other: Geometry) -> bool:
        """
        Check if this geometry covers another geometry in 2D.

        Parameters
        ----------
        other : Geometry
            The other geometry to check coverage with.

        Returns
        -------
        bool
            True if this geometry covers the other geometry, False otherwise.
        """
        return lib.sfcgal_geometry_covers(self._geom, other._geom) == 1

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def covers_3d(self, other: Geometry) -> bool:
        """
        Check if this geometry covers another geometry in 3D.

        Parameters
        ----------
        other : Geometry
            The other geometry to check 3D coverage with.

        Returns
        -------
        bool
            True if this geometry covers the other geometry in 3D, False otherwise.
        """
        return lib.sfcgal_geometry_covers_3d(self._geom, other._geom) == 1

    @cond_icontract(lambda self: self.is_valid(), "require")
    def triangulate_2dz(self) -> Optional[Geometry]:
        """
        Compute the 2D triangulation of the geometry with Z values.

        Returns
        -------
        Geometry
            The resulting triangulated geometry with Z values.
        """
        geom = lib.sfcgal_geometry_triangulate_2dz(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def tessellate(self) -> Optional[Geometry]:
        """
        Perform tessellation on the geometry.

        Returns
        -------
        Geometry
            The tessellated geometry.
        """
        tri = lib.sfcgal_geometry_triangulate_2dz(self._geom)
        geom = lib.sfcgal_geometry_intersection(self._geom, tri)

        return Geometry.from_sfcgal_geometry(geom)

    def force_lhr(self) -> Optional[Geometry]:
        """
        Force the geometry to have a left-hand rule (LHR) orientation.

        Returns
        -------
        Geometry
            The resulting geometry with LHR orientation.
        """
        geom = lib.sfcgal_geometry_force_lhr(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    def force_rhr(self) -> Optional[Geometry]:
        """
        Force the geometry to have a right-hand rule (RHR) orientation.

        Returns
        -------
        Geometry
            The resulting geometry with RHR orientation.
        """
        geom = lib.sfcgal_geometry_force_rhr(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    def is_valid(self) -> bool:
        """
        Check if the geometry is valid.

        Returns
        -------
        bool
            True if the geometry is valid, False otherwise.
        """
        return lib.sfcgal_geometry_is_valid(self._geom) != 0

    def is_valid_detail(self) -> Tuple[Optional[str], None]:
        """
        Provide detailed information about the validity of the geometry.

        Returns
        -------
        str
            A string describing the reason if the geometry is invalid.
            If valid, returns None.
        """
        invalidity_reason = ffi.new("char **")
        invalidity_location = ffi.new("sfcgal_geometry_t **")
        lib.sfcgal_geometry_is_valid_detail(
            self._geom, invalidity_reason, invalidity_location
        )
        ffi_invalidity_reason = invalidity_reason[0]

        # If ffi_invalidity_reason is Null, the geometry is valid.
        if ffi_invalidity_reason == ffi.NULL:
            return (None, None)

        return (ffi.string(ffi_invalidity_reason).decode("utf-8"), None)

    def is_planar(self) -> bool:
        """
        Check if the geometry is planar.

        Returns
        -------
        bool
            True if the geometry is planar, False otherwise.
        """
        return lib.sfcgal_geometry_is_planar(self._geom) == 1

    @cond_icontract(lambda self: self.is_valid(), "require")
    def orientation(self) -> int:
        """
        Get the orientation of the geometry.

        Returns
        -------
        int
            The orientation of the geometry.
        """
        return lib.sfcgal_geometry_orientation(self._geom)

    @cond_icontract(lambda self, r: self.is_valid(), "require")
    def round(self, r: int) -> Optional[Geometry]:
        """
        Round the geometry to a specified precision.

        Parameters
        ----------
        r : float
            The precision to which to round the geometry.

        Returns
        -------
        float
            The rounded geometry.
        """
        geom = lib.sfcgal_geometry_round(self._geom, r)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
    def minkowski_sum(self, other: Geometry) -> Optional[Geometry]:
        """
        Calculate the Minkowski sum of this geometry and another geometry.

        Parameters
        ----------
        other : Geometry
            The other geometry to calculate the Minkowski sum with.

        Returns
        -------
        Geometry
            The resulting Minkowski sum geometry.
        """
        geom = lib.sfcgal_geometry_minkowski_sum(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, radius: self.is_valid(), "require")
    def offset_polygon(self, radius: float) -> Optional[Geometry]:
        """
        Create an offset polygon from the geometry.

        Parameters
        ----------
        radius : float
            The radius of the offset.

        Returns
        -------
        Geometry
            The resulting offset polygon geometry.
        """
        geom = lib.sfcgal_geometry_offset_polygon(self._geom, radius)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, extrude_x, extrude_y, extrude_z: self.is_valid(), "require"
    )
    def extrude(
            self, extrude_x: float, extrude_y: float, extrude_z: float
    ) -> Optional[Geometry]:
        """
        Extrude the geometry in the specified direction.

        Parameters
        ----------
        extrude_x : float
            The distance to extrude in the x direction.
        extrude_y : float
            The distance to extrude in the y direction.
        extrude_z : float
            The distance to extrude in the z direction.

        Returns
        -------
        Geometry
            The resulting extruded geometry.
        """
        geom = lib.sfcgal_geometry_extrude(self._geom, extrude_x, extrude_y, extrude_z)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def straight_skeleton(self) -> Optional[Geometry]:
        """
        Compute the straight skeleton of the geometry.

        Returns
        -------
        Geometry
            The resulting straight skeleton geometry.
        """
        geom = lib.sfcgal_geometry_straight_skeleton(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def straight_skeleton_distance_in_m(self) -> Optional[Geometry]:
        """
        Compute the straight skeleton distance in meters.

        Returns
        -------
        Geometry
            The resulting geometry representing the straight skeleton distance.
        """
        geom = lib.sfcgal_geometry_straight_skeleton_distance_in_m(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, height: (
            self.is_valid() and self.geom_type == "Polygon" and height != 0
        ),
        "require",
    )
    def extrude_straight_skeleton(self, height: float) -> Optional[Geometry]:
        """
        Extrude the geometry along its straight skeleton.

        Parameters
        ----------
        height : float
            The height to which the geometry will be extruded.

        Returns
        -------
        Geometry
            The resulting extruded geometry along the straight skeleton.
        """
        geom = lib.sfcgal_geometry_extrude_straight_skeleton(self._geom, height)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, building_height, roof_height: (
            self.is_valid() and self.geom_type == "Polygon" and roof_height != 0
        ),
        "require",
    )
    def extrude_polygon_straight_skeleton(
        self, building_height: float, roof_height: float
    ) -> Optional[Geometry]:
        """
        Extrude a polygon along its straight skeleton with specified building
        and roof heights.

        Parameters
        ----------
        building_height : float
            The height of the building.
        roof_height : float
            The height of the roof.

        Returns
        -------
        Geometry
            The resulting geometry with the specified building and roof heights.
        """
        geom = lib.sfcgal_geometry_extrude_polygon_straight_skeleton(
            self._geom, building_height, roof_height
        )
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self: (
            self.is_valid()
            and self.geom_type in ("MultiPolygon", "Polygon", "Triangle")
        ),
        "require",
    )
    def straight_skeleton_partition(self):
        """Returns the straight skeleton partition for the given Polygon

        Returns
        -------
        Geometry
            Partition of the Polygon straight skeleton
        """
        geom = lib.sfcgal_geometry_straight_skeleton_partition(self._geom, True)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self: self.is_valid(), "require")
    def approximate_medial_axis(self) -> Optional[Geometry]:
        """
        Compute the approximate medial axis of the geometry.

        Returns
        -------
        Geometry
            The resulting geometry representing the approximate medial axis.
        """
        geom = lib.sfcgal_geometry_approximate_medial_axis(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, start, end: (
            self.is_valid() and -1. <= start <= 1. and -1. <= end <= 1.
        ),
        "require",
    )
    @cond_icontract(lambda result: result.is_valid(), "ensure")
    def line_sub_string(self, start: float, end: float) -> Optional[Geometry]:
        """
        Extract a substring from the geometry represented as a line segment.

        Parameters
        ----------
        start : float
            The start parameter of the substring.
        end : float
            The end parameter of the substring.

        Returns
        -------
        Geometry
            The resulting substring geometry.
        """
        geom = lib.sfcgal_geometry_line_sub_string(self._geom, start, end)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, alpha=1.0, allow_holes=False: (
            self.is_valid() and alpha >= 0
        ),
        "require",
    )
    def alpha_shapes(
            self, alpha: float = 1.0, allow_holes: bool = False) -> Optional[Geometry]:
        """
        Compute the alpha shapes of the geometry.

        Parameters
        ----------
        alpha : float, optional
            The alpha parameter (default is 1.0).
        allow_holes : bool, optional
            Whether to allow holes in the alpha shapes (default is False).

        Returns
        -------
        Geometry
            The resulting alpha shapes geometry.
        """
        if "MSC" in compiler:
            raise NotImplementedError(
                "Alpha shapes methods is not available on Python versions using MSVC "
                "compiler. See: https://github.com/CGAL/cgal/issues/7667"
            )
        geom = lib.sfcgal_geometry_alpha_shapes(self._geom, alpha, allow_holes)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, allow_holes=False, nb_components=1: (
            self.is_valid() and nb_components >= 0
        ),
        "require",
    )
    def optimal_alpha_shapes(
        self, allow_holes: bool = False, nb_components: int = 1
    ) -> Optional[Geometry]:
        """
        Compute the optimal alpha shapes of the geometry.

        Parameters
        ----------
        allow_holes : bool, optional
            Whether to allow holes in the optimal alpha shapes (default is False).
        nb_components : int, optional
            The number of components to consider (default is 1).

        Returns
        -------
        Geometry
            The resulting optimal alpha shapes geometry.
        """
        if "MSC" in compiler:
            raise NotImplementedError(
                "Alpha shapes methods is not available on Python versions using MSVC "
                "compiler. See: https://github.com/CGAL/cgal/issues/7667"
            )
        geom = lib.sfcgal_geometry_optimal_alpha_shapes(
            self._geom, allow_holes, nb_components
        )
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
    def y_monotone_partition_2(
        self, allow_holes: bool = False, nb_components: int = 1
    ) -> Optional[Geometry]:
        """
        Compute the Y-monotone partition of the geometry in 2D.

        Parameters
        ----------
        allow_holes : bool, optional
            Whether to allow holes in the partition (default is False).
        nb_components : int, optional
            The number of components to consider (default is 1).

        Returns
        -------
        Geometry
            The resulting Y-monotone partition geometry.
        """
        geom = lib.sfcgal_y_monotone_partition_2(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
    def approx_convex_partition_2(
        self, allow_holes: bool = False, nb_components: int = 1
    ) -> Optional[Geometry]:
        """
        Compute the approximate convex partition of the geometry in 2D.

        Parameters
        ----------
        allow_holes : bool, optional
            Whether to allow holes in the partition (default is False).
        nb_components : int, optional
            The number of components to consider (default is 1).

        Returns
        -------
        Geometry
            The resulting approximate convex partition geometry.
        """
        geom = lib.sfcgal_approx_convex_partition_2(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
    def greene_approx_convex_partition_2(
        self, allow_holes: bool = False, nb_components: int = 1
    ) -> Optional[Geometry]:
        """
        Compute the Greene's approximate convex partition of the geometry in 2D.

        Parameters
        ----------
        allow_holes : bool, optional
            Whether to allow holes in the partition (default is False).
        nb_components : int, optional
            The number of components to consider (default is 1).

        Returns
        -------
        Geometry
            The resulting Greene's approximate convex partition geometry.
        """
        geom = lib.sfcgal_greene_approx_convex_partition_2(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
    def optimal_convex_partition_2(
        self, allow_holes: bool = False, nb_components: int = 1
    ) -> Optional[Geometry]:
        """
        Compute the optimal convex partition of the geometry in 2D.

        Parameters
        ----------
        allow_holes : bool, optional
            Whether to allow holes in the partition (default is False).
        nb_components : int, optional
            The number of components to consider (default is 1).

        Returns
        -------
        Geometry
            The resulting optimal convex partition geometry.
        """
        geom = lib.sfcgal_optimal_convex_partition_2(self._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, other: (
            self.is_valid()
            and self.geom_type == "Polygon"
            and other.is_valid()
            and other.geom_type == "Point"
            and self.intersects(other)
        ),
        "require",
    )
    def point_visibility(self, other: Geometry) -> Optional[Geometry]:
        """
        Compute the visibility of a point from a polygon geometry.

        Parameters
        ----------
        other : Geometry
            A point geometry from which the visibility is computed.

        Returns
        -------
        Geometry
            The resulting geometry representing the visibility from the point to
            the polygon.
        """
        geom = lib.sfcgal_geometry_visibility_point(self._geom, other._geom)
        return Geometry.from_sfcgal_geometry(geom)

    @cond_icontract(
        lambda self, other_a, other_b: (
            self.is_valid()
            and self.geom_type == "Polygon"
            and other_a.is_valid()
            and other_a.geom_type == "Point"
            and other_b.is_valid()
            and other_b.geom_type == "Point"
            and self.has_exterior_edge(other_a, other_b)
        ),
        "require",
    )
    def segment_visibility(
            self, other_a: Geometry, other_b: Geometry) -> Optional[Geometry]:
        """
        Compute the visibility of a segment between two points from a polygon geometry.

        Parameters
        ----------
        other_a : Geometry
            The first point geometry defining one endpoint of the segment.
        other_b : Geometry
            The second point geometry defining the other endpoint of the segment.

        Returns
        -------
        Geometry
            The resulting geometry representing the visibility along the segment between
            the two points.
        """
        geom = lib.sfcgal_geometry_visibility_segment(
            self._geom, other_a._geom, other_b._geom
        )
        return Geometry.from_sfcgal_geometry(geom)

    def translate_2d(self, dx: float = 0, dy: float = 0) -> Optional[Geometry]:
        """
        This method is an alias for the `translate` function.

        .. deprecated:: 2.0.0
                `translate_2d` will be removed in v3.0.0, it is replaced by
                `translate` in order to be consistent in the function naming.

        Parameters
        ----------
        dx : float, optional
            x component of the translation vector
        dy : float, optional
            y component of the translation vector

        Returns
        -------
        Geometry
            A 2D geometry translated from the current geometry
        """
        return self.translate(dx, dy)

    def translate(self, dx: float = 0, dy: float = 0) -> Optional[Geometry]:
        """Translate a geometry by a 2D vector, hence producing a
        2D-geometry as an output.

        Parameters
        ----------
        dx : float, optional
            x component of the translation vector
        dy : float, optional
            y component of the translation vector

        Returns
        -------
        Geometry
            A 2D geometry translated from the current geometry
        """
        translated_geom = lib.sfcgal_geometry_translate_2d(self._geom, dx, dy)
        return Geometry.from_sfcgal_geometry(translated_geom)

    def translate_3d(
            self, dx: float = 0, dy: float = 0, dz: float = 0) -> Optional[Geometry]:
        """
        Translate a geometry by a 3D vector, hence producing a 3D-geometry as an output.

        If the current geometry is 2D, the starting Z coordinates is assumed to be 0.

        Parameters
        ----------
        dx : float, optional
            x component of the translation vector
        dy : float, optional
            y component of the translation vector
        dz : float, optional
            z component of the translation vector

        Returns
        -------
        Geometry
            A 3D geometry translated from the current geometry
        """
        translated_geom = lib.sfcgal_geometry_translate_3d(self._geom, dx, dy, dz)
        return Geometry.from_sfcgal_geometry(translated_geom)

    def scale_uniform(self, factor: float = 1.) -> Optional[Geometry]:
        """Scale a geometry by a given factor

        Parameters
        ----------
        factor : float, optional
            Scaling factor, 1. by default (identity scale)

        Returns
        -------
        Geometry
            Scaled geometry
        """
        return self.scale(factor, factor, factor)

    def scale(
            self, fx: float = 1., fy: float = 1., fz: float = 1.) -> Optional[Geometry]:
        """Scale a geometry by different factors for each dimension

        Parameters
        ----------
        fx : float, optional
            Scaling factor for x dimension, 1. by default (identity scale)
        fy : float, optional
            Scaling factor for y dimension, 1. by default (identity scale)
        fz : float, optional
            Scaling factor for z dimension, 1. by default (identity scale)

        Returns
        -------
        Geometry
            Scaled geometry
        """
        geom = lib.sfcgal_geometry_scale_3d(self._geom, fx, fy, fz)
        return Geometry.from_sfcgal_geometry(geom)

    def scale_around_center(
            self, fx: float, fy: float, fz: float, cx: float, cy: float, cz: float
    ) -> Optional[Geometry]:
        """
        Scale a geometry by different factors for each dimension around a center point

        Parameters
        ----------
        fx : float
            Scaling factor for x dimension
        fy : float
            Scaling factor for y dimension
        fz : float
            Scaling factor for z dimension
        cx : float
            X-coordinate of the center point
        cy : float
            Y-coordinate of the center point
        cz : float
            Z-coordinate of the center point

        """
        geom = lib.sfcgal_geometry_scale_3d_around_center(
            self._geom, fx, fy, fz, cx, cy, cz
        )
        return Geometry.from_sfcgal_geometry(geom)

    def rotate(self, angle: float = 0.) -> Optional[Geometry]:
        """
        Rotates a geometry around the origin (0,0,0) by a given angle

        Parameters
        ----------
        angle : float, optional
            Rotation angle in radians

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate(self._geom, angle)
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_around_2d_point(
        self, angle: float, cx: float, cy: float
    ) -> Optional[Geometry]:
        """
        Rotates a geometry around a specified point by a given angle

        Parameters
        ----------
        angle : float
            Rotation angle in radians
        cx : float
            X-coordinate of the center point
        cy : float
            Y-coordinate of the center point

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_2d(self._geom, angle, cx, cy)
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_around_3d_axis(
        self, angle: float, ax: float, ay: float, az: float
    ) -> Optional[Geometry]:
        """
        Rotates a 3D geometry around a specified axis by a given angle

        Parameters
        ----------
        angle : float
            Rotation angle in radians
        ax : float
            X-coordinate of the axis vector
        ay : float
            Y-coordinate of the axis vector
        az : float
            Z-coordinate of the axis vector

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_3d(self._geom, angle, ax, ay, az)
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_3d_around_center(
        self,
        angle: float,
        ax: float,
        ay: float,
        az: float,
        cx: float,
        cy: float,
        cz: float,
    ) -> Optional[Geometry]:
        """
        Rotates a 3D geometry around a specified axis and center point by a given

        Parameters
        ----------
        angle : float
            Rotation angle in radians
        ax : float
            X-coordinate of the axis vector
        ay : float
            Y-coordinate of the axis vector
        az : float
            Z-coordinate of the axis vector
        cx : float
            X-coordinate of the center point
        cy : float
            Y-coordinate of the center point
        cz : float
            Z-coordinate of the center point

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_3d_around_center(
            self._geom, angle, ax, ay, az, cx, cy, cz
        )
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_x(self, angle: float = 0.) -> Optional[Geometry]:
        """
        Rotates a geometry around the X axis by a given angle

        Parameters
        ----------
        angle : float, optional
            Rotation angle in radians

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_x(self._geom, angle)
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_y(self, angle: float = 0.) -> Optional[Geometry]:
        """
        Rotates a geometry around the Y axis by a given angle

        Parameters
        ----------
        angle : float, optional
            Rotation angle in radians

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_y(self._geom, angle)
        return Geometry.from_sfcgal_geometry(geom)

    def rotate_z(self, angle: float = 0.) -> Optional[Geometry]:
        """
        Rotates a geometry around the Z axis by a given angle

        Parameters
        ----------
        angle : float, optional
            Rotation angle in radians

        Returns
        -------
        Geometry
            The rotated geometry
        """
        geom = lib.sfcgal_geometry_rotate_z(self._geom, angle)
        return Geometry.from_sfcgal_geometry(geom)

    def write_vtk(self, filename: str) -> None:
        """
        Export the geometry to a VTK file.

        Parameters
        ----------
        filename : str
            The name of the file to which the geometry will be exported.

        """
        return lib.sfcgal_geometry_as_vtk_file(self._geom, bytes(filename, 'utf-8'))

    def to_vtk(self) -> str:
        """
        Export the geometry to a VTK string, i.e. basically the content of a VTK file.

        Returns
        -------
        str
            VTK representation of the geometry
        """
        try:
            buf = ffi.new("char**")
            length = ffi.new("size_t*")
            lib.sfcgal_geometry_as_vtk(self._geom, buf, length)
            vtk_string = ffi.string(buf[0], length[0]).decode("utf-8")
        finally:
            # we're responsible for free'ing the memory
            if not buf[0] == ffi.NULL:
                lib.free(buf[0])
        return vtk_string

    def write_obj(self, filename: str) -> None:
        """
        Export the geometry to a OBJ file.

        Parameters
        ----------
        filename : str
            The name of the file to which the geometry will be exported.

        """
        return lib.sfcgal_geometry_as_obj_file(self._geom, bytes(filename, 'utf-8'))

    def to_obj(self) -> str:
        """
        Export the geometry to a OBJ string, i.e. basically the content of a OBJ file.

        Returns
        -------
        str
            OBJ representation of the geometry
        """
        try:
            buf = ffi.new("char**")
            length = ffi.new("size_t*")
            lib.sfcgal_geometry_as_obj(self._geom, buf, length)
            obj_string = ffi.string(buf[0], length[0]).decode("utf-8")
        finally:
            # we're responsible for free'ing the memory
            if not buf[0] == ffi.NULL:
                lib.free(buf[0])
        return obj_string

    def __del__(self):
        if self._owned:
            # only free geometries owned by the class
            # this isn't the case when working with geometries contained by
            # a collection (e.g. a GeometryCollection)
            lib.sfcgal_geometry_delete(self._geom)

    def __str__(self):
        return self.to_wkt(8)

    def wrap(self) -> Optional[Geometry]:
        """Wrap the SFCGAL geometry attribute of the current instance in a new geometry
        instance. This method produces a deep copy of the geometry instance.

        Returns
        -------
        Geometry
            A cloned Geometry of the current instance

        """
        return Geometry.from_sfcgal_geometry(lib.sfcgal_geometry_clone(self._geom))

    @staticmethod
    def from_sfcgal_geometry(geom: ffi.CData, owned: bool = True) -> Optional[Geometry]:
        """Wrap the SFCGAL geometry passed as a parameter in a new geometry instance.

        This method allows to build a new Python object from a SFCGAL geometry (which
        is basically a C pointer).

        Parameters
        ----------
        geom : _cffi_backend._CDatabase
            SFCGAL geometry that will be used as an attribute in the new geometry
            instance
        owned : bool
            If True, the new Geometry owns the SFCGAL pointer. Be careful, if a SFCGAL
            pointer is owned by several Geometry instances, there might be some trouble
            after removing one of them (or after the garbage collector action).

        Returns
        -------
        Geometry
            A Geometry instance built from the SFCGAL geometry parameter.

        """
        if geom == ffi.NULL:
            return None
        geom_type_id = lib.sfcgal_geometry_type_id(geom)
        if geom_type_id not in geom_type_to_cls:
            return None
        cls = geom_type_to_cls[geom_type_id]
        geometry: Geometry = object.__new__(cls)
        geometry._geom = geom
        geometry._owned = owned
        return geometry

    def to_coordinates(self):
        """Generates the coordinates of the Geometry.

        Raises
        ------
        NotImplementedError
            The method must be implemented only in child classes.
        """
        raise NotImplementedError(
            "to_coordinates is implemented only for child classes!"
        )

    def to_dict(self) -> dict:
        """Generates a geojson-like dictionary that represents the Geometry.

        This dictionary contains a 'type' key which depicts the geometry type
        (e.g. Point, MultiLineString, Tin, ...) and a 'coordinates' key that contains
        the geometry point coordinates.

        """
        return {"type": self.geom_type, "coordinates": self.to_coordinates()}

    @classmethod
    def from_coordinates(cls, coordinates: list) -> Optional[Geometry]:
        """Instantiates a Geometry starting from a list of coordinates.

        The geometry class may be Point, LineString, Polygon, ...

        Parameters
        ----------
        coordinates : list
            Geometry coordinates, the list structure depends on the geometry type.

        Returns
        -------
        Geometry
            An instance of the corresponding geometry type
        """
        return cls(coordinates)  # type: ignore

    @classmethod
    def from_dict(cls, geojson_data: dict) -> Optional[Geometry]:
        """Instantiates a Geometry starting from a geojson-like dictionnary.

        The dictionary must contain 'type' and 'coordinates' keys; the 'type' value
        should be a valid geometry descriptor.

        The geometry class with which the method is called may be Point, LineString,
        Polygon, ...

        Parameters
        ----------
        geojson_data : dict
            Geometry description, in a geojson-like format

        Returns
        -------
        Geometry
            An instance of the corresponding geometry type
        """
        if geojson_data.get("type") is None:
            raise KeyError("There is no 'type' key in the provided data.")
        if geojson_data.get("coordinates") is None:
            raise KeyError("There is no 'coordinates' key in the provided data.")
        return cls.from_coordinates(geojson_data["coordinates"])

    @staticmethod
    def from_wkt(wkt: str) -> Optional[Geometry]:
        """Parse a Well-Known Text (WKT) representation into a Geometry object.

        This function takes a WKT string and converts it into a `Geometry` object
        by utilizing the SFCGAL library's WKT parsing capabilities.

        Parameters
        ----------
        wkt : str
            The Well-Known Text (WKT) string representing the geometry.

        Returns
        -------
        Geometry
            A `Geometry` object parsed from the WKT string.

        """
        sfcgal_geom = Geometry.sfcgal_geom_from_wkt(wkt)
        return Geometry.from_sfcgal_geometry(sfcgal_geom)

    @staticmethod
    def sfcgal_geom_from_wkt(wkt: str) -> ffi.CData:
        """
        Internal function to read Well-Known Text (WKT) and return the
        SFCGAL geometry object.

        This function converts the WKT string into a UTF-8 encoded byte string,
        and uses the SFCGAL library to create a geometry object from the WKT.

        Parameters
        ----------
        wkt : str
            The Well-Known Text (WKT) string representing the geometry.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Point

        """
        wkt_bytes = bytes(wkt, encoding="utf-8")
        return lib.sfcgal_io_read_wkt(wkt_bytes, len(wkt_bytes))

    @staticmethod
    def from_wkb(wkb: Union[bytes, bytearray]) -> Optional[Geometry]:
        """
        Parse a Well-Known Binary (WKB) representation into a Geometry object.

        This function takes a WKB byte string and converts it into a `Geometry` object
        by utilizing the SFCGAL library's WKB parsing capabilities.

        Parameters
        ----------
        wkb : bytes
            The Well-Known Binary (WKB) byte string representing the geometry.

        Returns
        -------
        Geometry
            A `Geometry` object parsed from the WKB byte string.
        """
        sfcgal_geom = Geometry.sfcgal_geom_from_wkb(wkb)
        return Geometry.from_sfcgal_geometry(sfcgal_geom)

    @staticmethod
    def sfcgal_geom_from_wkb(wkb: Union[str, bytes, bytearray]) -> ffi.CData:
        """Internal function to read a Well-Known Binary (WKB) representation
        and return the SFCGAL geometry object.

        This function accepts a WKB representation in either binary format
        (bytes or bytearray) or hexadecimal string format,
        converts it into a UTF-8 encoded byte string, and uses the SFCGAL
        library to generate the corresponding geometry object.

        Parameters
        ----------
        wkb : bytes, bytearray, or str
            The Well-Known Binary (WKB) data representing the geometry.
            - If a `bytes` or `bytearray` object is provided, it is automatically
            converted to a hexadecimal string.
            - If a `str` is provided, it must already be a hexadecimal string.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Point

        """
        if isinstance(wkb, (bytes, bytearray)):
            wkb = wkb.hex()
        elif not isinstance(wkb, str):
            raise TypeError("WKB must be a hexadecimal str or data binary")
        wkb = bytes(wkb, encoding="utf-8")
        return lib.sfcgal_io_read_wkb(wkb, len(wkb))

    def to_wkt(self, decim: int = -1) -> str:
        """Convert a geometry object into its Well-Known Text (WKT) representation.

        This function takes a geometry object and returns its WKT representation as a
        string.
        If the `decim` parameter is provided and is non-negative, the WKT will include
        a specific number of decimal places.

        Parameters
        ----------
        decim : int, optional
            The number of decimal places to include in the WKT output.
            If `decim` is negative (default), the WKT is returned without a specific
            decimal precision.

        Returns
        -------
        str
            The Well-Known Text (WKT) representation of the geometry.

        """
        wkt = ""
        try:
            buf = ffi.new("char**")
            length = ffi.new("size_t*")
            if decim >= 0:
                lib.sfcgal_geometry_as_text_decim(self._geom, decim, buf, length)
            else:
                lib.sfcgal_geometry_as_text(self._geom, buf, length)
            wkt = ffi.string(buf[0], length[0]).decode("utf-8")
        finally:
            # we're responsible for free'ing the memory
            if not buf[0] == ffi.NULL:
                lib.free(buf[0])
        return wkt

    def to_wkb(self, as_hex: bool = False) -> str:
        """Convert a geometry object into its Well-Known Binary (WKB) or Hexadecimal WKB
        representation.

        This function takes a geometry object and returns its WKB representation as a
        binary string, or as a hexadecimal string if `as_hex` is set to True. It handles
        memory allocation for the generated WKB and ensures that memory is properly
        freed after use.

        Parameters
        ----------
        as_hex : bool, optional
            If True, the function returns the geometry's WKB as a hexadecimal string.
            If False (default), the WKB is returned as a binary string.

        Returns
        -------
        Union[str, bytes]
            WKB representation of the geometry

        """
        try:
            buf = ffi.new("char**")
            length = ffi.new("size_t*")
            if as_hex:
                lib.sfcgal_geometry_as_hexwkb(self._geom, buf, length)
            else:
                lib.sfcgal_geometry_as_wkb(self._geom, buf, length)

            wkb = ffi.buffer(buf[0], length[0])[:]
        finally:
            # we're responsible for free'ing the memory
            if not buf[0] == ffi.NULL:
                lib.free(buf[0])
        return wkb.decode("utf-8") if as_hex else wkb

area: float property

Return the area of the geometry.

This property returns the area of the geometry, applicable for surfaces like polygons.

Returns:

Type Description
float

The area of the geometry.

geom_type: str property

Return the type of the geometry as a string.

Returns:

Type Description
str

The geometry type as a string (e.g., 'Point', 'Polygon').

has_m: bool property

Check if the geometry is measured (has an 'M' value).

Returns:

Type Description
bool

True if the geometry is measured, False otherwise.

has_z: bool property

Check if the geometry has a Z component (3D geometry).

Returns:

Type Description
bool

True if the geometry has a Z component, False otherwise.

is_empty: bool property

Check if the geometry is empty.

Returns:

Type Description
bool

True if the geometry is empty, False otherwise.

alpha_shapes(alpha=1.0, allow_holes=False)

Compute the alpha shapes of the geometry.

Parameters:

Name Type Description Default
alpha float

The alpha parameter (default is 1.0).

1.0
allow_holes bool

Whether to allow holes in the alpha shapes (default is False).

False

Returns:

Type Description
Geometry

The resulting alpha shapes geometry.

Source code in pysfcgal/sfcgal.py
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
@cond_icontract(
    lambda self, alpha=1.0, allow_holes=False: (
        self.is_valid() and alpha >= 0
    ),
    "require",
)
def alpha_shapes(
        self, alpha: float = 1.0, allow_holes: bool = False) -> Optional[Geometry]:
    """
    Compute the alpha shapes of the geometry.

    Parameters
    ----------
    alpha : float, optional
        The alpha parameter (default is 1.0).
    allow_holes : bool, optional
        Whether to allow holes in the alpha shapes (default is False).

    Returns
    -------
    Geometry
        The resulting alpha shapes geometry.
    """
    if "MSC" in compiler:
        raise NotImplementedError(
            "Alpha shapes methods is not available on Python versions using MSVC "
            "compiler. See: https://github.com/CGAL/cgal/issues/7667"
        )
    geom = lib.sfcgal_geometry_alpha_shapes(self._geom, alpha, allow_holes)
    return Geometry.from_sfcgal_geometry(geom)

approx_convex_partition_2(allow_holes=False, nb_components=1)

Compute the approximate convex partition of the geometry in 2D.

Parameters:

Name Type Description Default
allow_holes bool

Whether to allow holes in the partition (default is False).

False
nb_components int

The number of components to consider (default is 1).

1

Returns:

Type Description
Geometry

The resulting approximate convex partition geometry.

Source code in pysfcgal/sfcgal.py
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
@cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
def approx_convex_partition_2(
    self, allow_holes: bool = False, nb_components: int = 1
) -> Optional[Geometry]:
    """
    Compute the approximate convex partition of the geometry in 2D.

    Parameters
    ----------
    allow_holes : bool, optional
        Whether to allow holes in the partition (default is False).
    nb_components : int, optional
        The number of components to consider (default is 1).

    Returns
    -------
    Geometry
        The resulting approximate convex partition geometry.
    """
    geom = lib.sfcgal_approx_convex_partition_2(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

approximate_medial_axis()

Compute the approximate medial axis of the geometry.

Returns:

Type Description
Geometry

The resulting geometry representing the approximate medial axis.

Source code in pysfcgal/sfcgal.py
701
702
703
704
705
706
707
708
709
710
711
712
@cond_icontract(lambda self: self.is_valid(), "require")
def approximate_medial_axis(self) -> Optional[Geometry]:
    """
    Compute the approximate medial axis of the geometry.

    Returns
    -------
    Geometry
        The resulting geometry representing the approximate medial axis.
    """
    geom = lib.sfcgal_geometry_approximate_medial_axis(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

area_3d()

Return the 3D area of the geometry.

Returns:

Type Description
float

The 3D area of the geometry.

Source code in pysfcgal/sfcgal.py
189
190
191
192
193
194
195
196
197
198
199
@cond_icontract(lambda self: self.is_valid(), "require")
def area_3d(self) -> float:
    """
    Return the 3D area of the geometry.

    Returns
    -------
    float
        The 3D area of the geometry.
    """
    return lib.sfcgal_geometry_area_3d(self._geom)

convexhull()

Compute the 2D convex hull of the geometry.

Returns:

Type Description
Geometry

The convex hull of the geometry.

Source code in pysfcgal/sfcgal.py
213
214
215
216
217
218
219
220
221
222
223
224
@cond_icontract(lambda self: self.is_valid(), "require")
def convexhull(self) -> Optional[Geometry]:
    """
    Compute the 2D convex hull of the geometry.

    Returns
    -------
    Geometry
        The convex hull of the geometry.
    """
    geom = lib.sfcgal_geometry_convexhull(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

convexhull_3d()

Compute the 3D convex hull of the geometry.

Returns:

Type Description
Geometry

The 3D convex hull of the geometry.

Source code in pysfcgal/sfcgal.py
226
227
228
229
230
231
232
233
234
235
236
237
@cond_icontract(lambda self: self.is_valid(), "require")
def convexhull_3d(self) -> Optional[Geometry]:
    """
    Compute the 3D convex hull of the geometry.

    Returns
    -------
    Geometry
        The 3D convex hull of the geometry.
    """
    geom = lib.sfcgal_geometry_convexhull_3d(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

covers(other)

Check if this geometry covers another geometry in 2D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to check coverage with.

required

Returns:

Type Description
bool

True if this geometry covers the other geometry, False otherwise.

Source code in pysfcgal/sfcgal.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def covers(self, other: Geometry) -> bool:
    """
    Check if this geometry covers another geometry in 2D.

    Parameters
    ----------
    other : Geometry
        The other geometry to check coverage with.

    Returns
    -------
    bool
        True if this geometry covers the other geometry, False otherwise.
    """
    return lib.sfcgal_geometry_covers(self._geom, other._geom) == 1

covers_3d(other)

Check if this geometry covers another geometry in 3D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to check 3D coverage with.

required

Returns:

Type Description
bool

True if this geometry covers the other geometry in 3D, False otherwise.

Source code in pysfcgal/sfcgal.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def covers_3d(self, other: Geometry) -> bool:
    """
    Check if this geometry covers another geometry in 3D.

    Parameters
    ----------
    other : Geometry
        The other geometry to check 3D coverage with.

    Returns
    -------
    bool
        True if this geometry covers the other geometry in 3D, False otherwise.
    """
    return lib.sfcgal_geometry_covers_3d(self._geom, other._geom) == 1

difference(other)

Compute the difference between this geometry and another in 2D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the difference with.

required

Returns:

Type Description
Geometry

The resulting geometry after computing the difference.

Source code in pysfcgal/sfcgal.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def difference(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the difference between this geometry and another in 2D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the difference with.

    Returns
    -------
    Geometry
        The resulting geometry after computing the difference.
    """
    geom = lib.sfcgal_geometry_difference(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

difference_3d(other)

Compute the difference between this geometry and another in 3D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the 3D difference with.

required

Returns:

Type Description
Geometry

The resulting 3D geometry after computing the difference.

Source code in pysfcgal/sfcgal.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def difference_3d(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the difference between this geometry and another in 3D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the 3D difference with.

    Returns
    -------
    Geometry
        The resulting 3D geometry after computing the difference.
    """
    geom = lib.sfcgal_geometry_difference_3d(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

distance(other)

Compute the 2D Euclidean distance between this geometry and another geometry.

Parameters:

Name Type Description Default
other Geometry

The other geometry object to compute the distance to.

required

Returns:

Type Description
float

The 2D Euclidean distance between the two geometries.

Source code in pysfcgal/sfcgal.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def distance(self, other: Geometry) -> float:
    """
    Compute the 2D Euclidean distance between this geometry and another geometry.

    Parameters
    ----------
    other : Geometry
        The other geometry object to compute the distance to.

    Returns
    -------
    float
        The 2D Euclidean distance between the two geometries.
    """
    return lib.sfcgal_geometry_distance(self._geom, other._geom)

distance_3d(other)

Compute the 3D Euclidean distance between this geometry and another geometry.

Parameters:

Name Type Description Default
other Geometry

The other geometry object to compute the 3D distance to.

required

Returns:

Type Description
float

The 3D Euclidean distance between the two geometries.

Source code in pysfcgal/sfcgal.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def distance_3d(self, other: Geometry) -> float:
    """
    Compute the 3D Euclidean distance between this geometry and another geometry.

    Parameters
    ----------
    other : Geometry
        The other geometry object to compute the 3D distance to.

    Returns
    -------
    float
        The 3D Euclidean distance between the two geometries.
    """
    return lib.sfcgal_geometry_distance_3d(self._geom, other._geom)

extrude(extrude_x, extrude_y, extrude_z)

Extrude the geometry in the specified direction.

Parameters:

Name Type Description Default
extrude_x float

The distance to extrude in the x direction.

required
extrude_y float

The distance to extrude in the y direction.

required
extrude_z float

The distance to extrude in the z direction.

required

Returns:

Type Description
Geometry

The resulting extruded geometry.

Source code in pysfcgal/sfcgal.py
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@cond_icontract(
    lambda self, extrude_x, extrude_y, extrude_z: self.is_valid(), "require"
)
def extrude(
        self, extrude_x: float, extrude_y: float, extrude_z: float
) -> Optional[Geometry]:
    """
    Extrude the geometry in the specified direction.

    Parameters
    ----------
    extrude_x : float
        The distance to extrude in the x direction.
    extrude_y : float
        The distance to extrude in the y direction.
    extrude_z : float
        The distance to extrude in the z direction.

    Returns
    -------
    Geometry
        The resulting extruded geometry.
    """
    geom = lib.sfcgal_geometry_extrude(self._geom, extrude_x, extrude_y, extrude_z)
    return Geometry.from_sfcgal_geometry(geom)

extrude_polygon_straight_skeleton(building_height, roof_height)

Extrude a polygon along its straight skeleton with specified building and roof heights.

Parameters:

Name Type Description Default
building_height float

The height of the building.

required
roof_height float

The height of the roof.

required

Returns:

Type Description
Geometry

The resulting geometry with the specified building and roof heights.

Source code in pysfcgal/sfcgal.py
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
@cond_icontract(
    lambda self, building_height, roof_height: (
        self.is_valid() and self.geom_type == "Polygon" and roof_height != 0
    ),
    "require",
)
def extrude_polygon_straight_skeleton(
    self, building_height: float, roof_height: float
) -> Optional[Geometry]:
    """
    Extrude a polygon along its straight skeleton with specified building
    and roof heights.

    Parameters
    ----------
    building_height : float
        The height of the building.
    roof_height : float
        The height of the roof.

    Returns
    -------
    Geometry
        The resulting geometry with the specified building and roof heights.
    """
    geom = lib.sfcgal_geometry_extrude_polygon_straight_skeleton(
        self._geom, building_height, roof_height
    )
    return Geometry.from_sfcgal_geometry(geom)

extrude_straight_skeleton(height)

Extrude the geometry along its straight skeleton.

Parameters:

Name Type Description Default
height float

The height to which the geometry will be extruded.

required

Returns:

Type Description
Geometry

The resulting extruded geometry along the straight skeleton.

Source code in pysfcgal/sfcgal.py
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
@cond_icontract(
    lambda self, height: (
        self.is_valid() and self.geom_type == "Polygon" and height != 0
    ),
    "require",
)
def extrude_straight_skeleton(self, height: float) -> Optional[Geometry]:
    """
    Extrude the geometry along its straight skeleton.

    Parameters
    ----------
    height : float
        The height to which the geometry will be extruded.

    Returns
    -------
    Geometry
        The resulting extruded geometry along the straight skeleton.
    """
    geom = lib.sfcgal_geometry_extrude_straight_skeleton(self._geom, height)
    return Geometry.from_sfcgal_geometry(geom)

force_lhr()

Force the geometry to have a left-hand rule (LHR) orientation.

Returns:

Type Description
Geometry

The resulting geometry with LHR orientation.

Source code in pysfcgal/sfcgal.py
443
444
445
446
447
448
449
450
451
452
453
def force_lhr(self) -> Optional[Geometry]:
    """
    Force the geometry to have a left-hand rule (LHR) orientation.

    Returns
    -------
    Geometry
        The resulting geometry with LHR orientation.
    """
    geom = lib.sfcgal_geometry_force_lhr(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

force_rhr()

Force the geometry to have a right-hand rule (RHR) orientation.

Returns:

Type Description
Geometry

The resulting geometry with RHR orientation.

Source code in pysfcgal/sfcgal.py
455
456
457
458
459
460
461
462
463
464
465
def force_rhr(self) -> Optional[Geometry]:
    """
    Force the geometry to have a right-hand rule (RHR) orientation.

    Returns
    -------
    Geometry
        The resulting geometry with RHR orientation.
    """
    geom = lib.sfcgal_geometry_force_rhr(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

from_coordinates(coordinates) classmethod

Instantiates a Geometry starting from a list of coordinates.

The geometry class may be Point, LineString, Polygon, ...

Parameters:

Name Type Description Default
coordinates list

Geometry coordinates, the list structure depends on the geometry type.

required

Returns:

Type Description
Geometry

An instance of the corresponding geometry type

Source code in pysfcgal/sfcgal.py
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
@classmethod
def from_coordinates(cls, coordinates: list) -> Optional[Geometry]:
    """Instantiates a Geometry starting from a list of coordinates.

    The geometry class may be Point, LineString, Polygon, ...

    Parameters
    ----------
    coordinates : list
        Geometry coordinates, the list structure depends on the geometry type.

    Returns
    -------
    Geometry
        An instance of the corresponding geometry type
    """
    return cls(coordinates)  # type: ignore

from_dict(geojson_data) classmethod

Instantiates a Geometry starting from a geojson-like dictionnary.

The dictionary must contain 'type' and 'coordinates' keys; the 'type' value should be a valid geometry descriptor.

The geometry class with which the method is called may be Point, LineString, Polygon, ...

Parameters:

Name Type Description Default
geojson_data dict

Geometry description, in a geojson-like format

required

Returns:

Type Description
Geometry

An instance of the corresponding geometry type

Source code in pysfcgal/sfcgal.py
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
@classmethod
def from_dict(cls, geojson_data: dict) -> Optional[Geometry]:
    """Instantiates a Geometry starting from a geojson-like dictionnary.

    The dictionary must contain 'type' and 'coordinates' keys; the 'type' value
    should be a valid geometry descriptor.

    The geometry class with which the method is called may be Point, LineString,
    Polygon, ...

    Parameters
    ----------
    geojson_data : dict
        Geometry description, in a geojson-like format

    Returns
    -------
    Geometry
        An instance of the corresponding geometry type
    """
    if geojson_data.get("type") is None:
        raise KeyError("There is no 'type' key in the provided data.")
    if geojson_data.get("coordinates") is None:
        raise KeyError("There is no 'coordinates' key in the provided data.")
    return cls.from_coordinates(geojson_data["coordinates"])

from_sfcgal_geometry(geom, owned=True) staticmethod

Wrap the SFCGAL geometry passed as a parameter in a new geometry instance.

This method allows to build a new Python object from a SFCGAL geometry (which is basically a C pointer).

Parameters:

Name Type Description Default
geom _CDatabase

SFCGAL geometry that will be used as an attribute in the new geometry instance

required
owned bool

If True, the new Geometry owns the SFCGAL pointer. Be careful, if a SFCGAL pointer is owned by several Geometry instances, there might be some trouble after removing one of them (or after the garbage collector action).

True

Returns:

Type Description
Geometry

A Geometry instance built from the SFCGAL geometry parameter.

Source code in pysfcgal/sfcgal.py
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
@staticmethod
def from_sfcgal_geometry(geom: ffi.CData, owned: bool = True) -> Optional[Geometry]:
    """Wrap the SFCGAL geometry passed as a parameter in a new geometry instance.

    This method allows to build a new Python object from a SFCGAL geometry (which
    is basically a C pointer).

    Parameters
    ----------
    geom : _cffi_backend._CDatabase
        SFCGAL geometry that will be used as an attribute in the new geometry
        instance
    owned : bool
        If True, the new Geometry owns the SFCGAL pointer. Be careful, if a SFCGAL
        pointer is owned by several Geometry instances, there might be some trouble
        after removing one of them (or after the garbage collector action).

    Returns
    -------
    Geometry
        A Geometry instance built from the SFCGAL geometry parameter.

    """
    if geom == ffi.NULL:
        return None
    geom_type_id = lib.sfcgal_geometry_type_id(geom)
    if geom_type_id not in geom_type_to_cls:
        return None
    cls = geom_type_to_cls[geom_type_id]
    geometry: Geometry = object.__new__(cls)
    geometry._geom = geom
    geometry._owned = owned
    return geometry

from_wkb(wkb) staticmethod

Parse a Well-Known Binary (WKB) representation into a Geometry object.

This function takes a WKB byte string and converts it into a Geometry object by utilizing the SFCGAL library's WKB parsing capabilities.

Parameters:

Name Type Description Default
wkb bytes

The Well-Known Binary (WKB) byte string representing the geometry.

required

Returns:

Type Description
Geometry

A Geometry object parsed from the WKB byte string.

Source code in pysfcgal/sfcgal.py
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
@staticmethod
def from_wkb(wkb: Union[bytes, bytearray]) -> Optional[Geometry]:
    """
    Parse a Well-Known Binary (WKB) representation into a Geometry object.

    This function takes a WKB byte string and converts it into a `Geometry` object
    by utilizing the SFCGAL library's WKB parsing capabilities.

    Parameters
    ----------
    wkb : bytes
        The Well-Known Binary (WKB) byte string representing the geometry.

    Returns
    -------
    Geometry
        A `Geometry` object parsed from the WKB byte string.
    """
    sfcgal_geom = Geometry.sfcgal_geom_from_wkb(wkb)
    return Geometry.from_sfcgal_geometry(sfcgal_geom)

from_wkt(wkt) staticmethod

Parse a Well-Known Text (WKT) representation into a Geometry object.

This function takes a WKT string and converts it into a Geometry object by utilizing the SFCGAL library's WKT parsing capabilities.

Parameters:

Name Type Description Default
wkt str

The Well-Known Text (WKT) string representing the geometry.

required

Returns:

Type Description
Geometry

A Geometry object parsed from the WKT string.

Source code in pysfcgal/sfcgal.py
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
@staticmethod
def from_wkt(wkt: str) -> Optional[Geometry]:
    """Parse a Well-Known Text (WKT) representation into a Geometry object.

    This function takes a WKT string and converts it into a `Geometry` object
    by utilizing the SFCGAL library's WKT parsing capabilities.

    Parameters
    ----------
    wkt : str
        The Well-Known Text (WKT) string representing the geometry.

    Returns
    -------
    Geometry
        A `Geometry` object parsed from the WKT string.

    """
    sfcgal_geom = Geometry.sfcgal_geom_from_wkt(wkt)
    return Geometry.from_sfcgal_geometry(sfcgal_geom)

greene_approx_convex_partition_2(allow_holes=False, nb_components=1)

Compute the Greene's approximate convex partition of the geometry in 2D.

Parameters:

Name Type Description Default
allow_holes bool

Whether to allow holes in the partition (default is False).

False
nb_components int

The number of components to consider (default is 1).

1

Returns:

Type Description
Geometry

The resulting Greene's approximate convex partition geometry.

Source code in pysfcgal/sfcgal.py
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
@cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
def greene_approx_convex_partition_2(
    self, allow_holes: bool = False, nb_components: int = 1
) -> Optional[Geometry]:
    """
    Compute the Greene's approximate convex partition of the geometry in 2D.

    Parameters
    ----------
    allow_holes : bool, optional
        Whether to allow holes in the partition (default is False).
    nb_components : int, optional
        The number of components to consider (default is 1).

    Returns
    -------
    Geometry
        The resulting Greene's approximate convex partition geometry.
    """
    geom = lib.sfcgal_greene_approx_convex_partition_2(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

intersection(other)

Compute the intersection of this geometry and another in 2D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the intersection with.

required

Returns:

Type Description
Geometry

The resulting geometry after the intersection operation.

Source code in pysfcgal/sfcgal.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def intersection(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the intersection of this geometry and another in 2D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the intersection with.

    Returns
    -------
    Geometry
        The resulting geometry after the intersection operation.
    """
    geom = lib.sfcgal_geometry_intersection(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

intersection_3d(other)

Compute the intersection of this geometry and another in 3D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the 3D intersection with.

required

Returns:

Type Description
Geometry

The resulting geometry after the 3D intersection operation.

Source code in pysfcgal/sfcgal.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def intersection_3d(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the intersection of this geometry and another in 3D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the 3D intersection with.

    Returns
    -------
    Geometry
        The resulting geometry after the 3D intersection operation.
    """
    geom = lib.sfcgal_geometry_intersection_3d(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

intersects(other)

Check if this geometry intersects with another geometry in 2D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to check intersection with.

required

Returns:

Type Description
bool

True if the geometries intersect, False otherwise.

Source code in pysfcgal/sfcgal.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
@cond_icontract(lambda self, other: self.is_valid(), "require")
def intersects(self, other: Geometry) -> bool:
    """
    Check if this geometry intersects with another geometry in 2D.

    Parameters
    ----------
    other : Geometry
        The other geometry to check intersection with.

    Returns
    -------
    bool
        True if the geometries intersect, False otherwise.
    """
    return lib.sfcgal_geometry_intersects(self._geom, other._geom) == 1

intersects_3d(other)

Check if this geometry intersects with another geometry in 3D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to check intersection with.

required

Returns:

Type Description
bool

True if the geometries intersect in 3D, False otherwise.

Source code in pysfcgal/sfcgal.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def intersects_3d(self, other: Geometry) -> bool:
    """
    Check if this geometry intersects with another geometry in 3D.

    Parameters
    ----------
    other : Geometry
        The other geometry to check intersection with.

    Returns
    -------
    bool
        True if the geometries intersect in 3D, False otherwise.
    """
    return lib.sfcgal_geometry_intersects_3d(self._geom, other._geom) == 1

is_planar()

Check if the geometry is planar.

Returns:

Type Description
bool

True if the geometry is planar, False otherwise.

Source code in pysfcgal/sfcgal.py
501
502
503
504
505
506
507
508
509
510
def is_planar(self) -> bool:
    """
    Check if the geometry is planar.

    Returns
    -------
    bool
        True if the geometry is planar, False otherwise.
    """
    return lib.sfcgal_geometry_is_planar(self._geom) == 1

is_valid()

Check if the geometry is valid.

Returns:

Type Description
bool

True if the geometry is valid, False otherwise.

Source code in pysfcgal/sfcgal.py
467
468
469
470
471
472
473
474
475
476
def is_valid(self) -> bool:
    """
    Check if the geometry is valid.

    Returns
    -------
    bool
        True if the geometry is valid, False otherwise.
    """
    return lib.sfcgal_geometry_is_valid(self._geom) != 0

is_valid_detail()

Provide detailed information about the validity of the geometry.

Returns:

Type Description
str

A string describing the reason if the geometry is invalid. If valid, returns None.

Source code in pysfcgal/sfcgal.py
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def is_valid_detail(self) -> Tuple[Optional[str], None]:
    """
    Provide detailed information about the validity of the geometry.

    Returns
    -------
    str
        A string describing the reason if the geometry is invalid.
        If valid, returns None.
    """
    invalidity_reason = ffi.new("char **")
    invalidity_location = ffi.new("sfcgal_geometry_t **")
    lib.sfcgal_geometry_is_valid_detail(
        self._geom, invalidity_reason, invalidity_location
    )
    ffi_invalidity_reason = invalidity_reason[0]

    # If ffi_invalidity_reason is Null, the geometry is valid.
    if ffi_invalidity_reason == ffi.NULL:
        return (None, None)

    return (ffi.string(ffi_invalidity_reason).decode("utf-8"), None)

line_sub_string(start, end)

Extract a substring from the geometry represented as a line segment.

Parameters:

Name Type Description Default
start float

The start parameter of the substring.

required
end float

The end parameter of the substring.

required

Returns:

Type Description
Geometry

The resulting substring geometry.

Source code in pysfcgal/sfcgal.py
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
@cond_icontract(
    lambda self, start, end: (
        self.is_valid() and -1. <= start <= 1. and -1. <= end <= 1.
    ),
    "require",
)
@cond_icontract(lambda result: result.is_valid(), "ensure")
def line_sub_string(self, start: float, end: float) -> Optional[Geometry]:
    """
    Extract a substring from the geometry represented as a line segment.

    Parameters
    ----------
    start : float
        The start parameter of the substring.
    end : float
        The end parameter of the substring.

    Returns
    -------
    Geometry
        The resulting substring geometry.
    """
    geom = lib.sfcgal_geometry_line_sub_string(self._geom, start, end)
    return Geometry.from_sfcgal_geometry(geom)

minkowski_sum(other)

Calculate the Minkowski sum of this geometry and another geometry.

Parameters:

Name Type Description Default
other Geometry

The other geometry to calculate the Minkowski sum with.

required

Returns:

Type Description
Geometry

The resulting Minkowski sum geometry.

Source code in pysfcgal/sfcgal.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def minkowski_sum(self, other: Geometry) -> Optional[Geometry]:
    """
    Calculate the Minkowski sum of this geometry and another geometry.

    Parameters
    ----------
    other : Geometry
        The other geometry to calculate the Minkowski sum with.

    Returns
    -------
    Geometry
        The resulting Minkowski sum geometry.
    """
    geom = lib.sfcgal_geometry_minkowski_sum(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

offset_polygon(radius)

Create an offset polygon from the geometry.

Parameters:

Name Type Description Default
radius float

The radius of the offset.

required

Returns:

Type Description
Geometry

The resulting offset polygon geometry.

Source code in pysfcgal/sfcgal.py
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
@cond_icontract(lambda self, radius: self.is_valid(), "require")
def offset_polygon(self, radius: float) -> Optional[Geometry]:
    """
    Create an offset polygon from the geometry.

    Parameters
    ----------
    radius : float
        The radius of the offset.

    Returns
    -------
    Geometry
        The resulting offset polygon geometry.
    """
    geom = lib.sfcgal_geometry_offset_polygon(self._geom, radius)
    return Geometry.from_sfcgal_geometry(geom)

optimal_alpha_shapes(allow_holes=False, nb_components=1)

Compute the optimal alpha shapes of the geometry.

Parameters:

Name Type Description Default
allow_holes bool

Whether to allow holes in the optimal alpha shapes (default is False).

False
nb_components int

The number of components to consider (default is 1).

1

Returns:

Type Description
Geometry

The resulting optimal alpha shapes geometry.

Source code in pysfcgal/sfcgal.py
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
@cond_icontract(
    lambda self, allow_holes=False, nb_components=1: (
        self.is_valid() and nb_components >= 0
    ),
    "require",
)
def optimal_alpha_shapes(
    self, allow_holes: bool = False, nb_components: int = 1
) -> Optional[Geometry]:
    """
    Compute the optimal alpha shapes of the geometry.

    Parameters
    ----------
    allow_holes : bool, optional
        Whether to allow holes in the optimal alpha shapes (default is False).
    nb_components : int, optional
        The number of components to consider (default is 1).

    Returns
    -------
    Geometry
        The resulting optimal alpha shapes geometry.
    """
    if "MSC" in compiler:
        raise NotImplementedError(
            "Alpha shapes methods is not available on Python versions using MSVC "
            "compiler. See: https://github.com/CGAL/cgal/issues/7667"
        )
    geom = lib.sfcgal_geometry_optimal_alpha_shapes(
        self._geom, allow_holes, nb_components
    )
    return Geometry.from_sfcgal_geometry(geom)

optimal_convex_partition_2(allow_holes=False, nb_components=1)

Compute the optimal convex partition of the geometry in 2D.

Parameters:

Name Type Description Default
allow_holes bool

Whether to allow holes in the partition (default is False).

False
nb_components int

The number of components to consider (default is 1).

1

Returns:

Type Description
Geometry

The resulting optimal convex partition geometry.

Source code in pysfcgal/sfcgal.py
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
@cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
def optimal_convex_partition_2(
    self, allow_holes: bool = False, nb_components: int = 1
) -> Optional[Geometry]:
    """
    Compute the optimal convex partition of the geometry in 2D.

    Parameters
    ----------
    allow_holes : bool, optional
        Whether to allow holes in the partition (default is False).
    nb_components : int, optional
        The number of components to consider (default is 1).

    Returns
    -------
    Geometry
        The resulting optimal convex partition geometry.
    """
    geom = lib.sfcgal_optimal_convex_partition_2(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

orientation()

Get the orientation of the geometry.

Returns:

Type Description
int

The orientation of the geometry.

Source code in pysfcgal/sfcgal.py
512
513
514
515
516
517
518
519
520
521
522
@cond_icontract(lambda self: self.is_valid(), "require")
def orientation(self) -> int:
    """
    Get the orientation of the geometry.

    Returns
    -------
    int
        The orientation of the geometry.
    """
    return lib.sfcgal_geometry_orientation(self._geom)

point_visibility(other)

Compute the visibility of a point from a polygon geometry.

Parameters:

Name Type Description Default
other Geometry

A point geometry from which the visibility is computed.

required

Returns:

Type Description
Geometry

The resulting geometry representing the visibility from the point to the polygon.

Source code in pysfcgal/sfcgal.py
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
@cond_icontract(
    lambda self, other: (
        self.is_valid()
        and self.geom_type == "Polygon"
        and other.is_valid()
        and other.geom_type == "Point"
        and self.intersects(other)
    ),
    "require",
)
def point_visibility(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the visibility of a point from a polygon geometry.

    Parameters
    ----------
    other : Geometry
        A point geometry from which the visibility is computed.

    Returns
    -------
    Geometry
        The resulting geometry representing the visibility from the point to
        the polygon.
    """
    geom = lib.sfcgal_geometry_visibility_point(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

rotate(angle=0.0)

Rotates a geometry around the origin (0,0,0) by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

0.0

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def rotate(self, angle: float = 0.) -> Optional[Geometry]:
    """
    Rotates a geometry around the origin (0,0,0) by a given angle

    Parameters
    ----------
    angle : float, optional
        Rotation angle in radians

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate(self._geom, angle)
    return Geometry.from_sfcgal_geometry(geom)

rotate_3d_around_center(angle, ax, ay, az, cx, cy, cz)

Rotates a 3D geometry around a specified axis and center point by a given

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

required
ax float

X-coordinate of the axis vector

required
ay float

Y-coordinate of the axis vector

required
az float

Z-coordinate of the axis vector

required
cx float

X-coordinate of the center point

required
cy float

Y-coordinate of the center point

required
cz float

Z-coordinate of the center point

required

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
def rotate_3d_around_center(
    self,
    angle: float,
    ax: float,
    ay: float,
    az: float,
    cx: float,
    cy: float,
    cz: float,
) -> Optional[Geometry]:
    """
    Rotates a 3D geometry around a specified axis and center point by a given

    Parameters
    ----------
    angle : float
        Rotation angle in radians
    ax : float
        X-coordinate of the axis vector
    ay : float
        Y-coordinate of the axis vector
    az : float
        Z-coordinate of the axis vector
    cx : float
        X-coordinate of the center point
    cy : float
        Y-coordinate of the center point
    cz : float
        Z-coordinate of the center point

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_3d_around_center(
        self._geom, angle, ax, ay, az, cx, cy, cz
    )
    return Geometry.from_sfcgal_geometry(geom)

rotate_around_2d_point(angle, cx, cy)

Rotates a geometry around a specified point by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

required
cx float

X-coordinate of the center point

required
cy float

Y-coordinate of the center point

required

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
def rotate_around_2d_point(
    self, angle: float, cx: float, cy: float
) -> Optional[Geometry]:
    """
    Rotates a geometry around a specified point by a given angle

    Parameters
    ----------
    angle : float
        Rotation angle in radians
    cx : float
        X-coordinate of the center point
    cy : float
        Y-coordinate of the center point

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_2d(self._geom, angle, cx, cy)
    return Geometry.from_sfcgal_geometry(geom)

rotate_around_3d_axis(angle, ax, ay, az)

Rotates a 3D geometry around a specified axis by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

required
ax float

X-coordinate of the axis vector

required
ay float

Y-coordinate of the axis vector

required
az float

Z-coordinate of the axis vector

required

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
def rotate_around_3d_axis(
    self, angle: float, ax: float, ay: float, az: float
) -> Optional[Geometry]:
    """
    Rotates a 3D geometry around a specified axis by a given angle

    Parameters
    ----------
    angle : float
        Rotation angle in radians
    ax : float
        X-coordinate of the axis vector
    ay : float
        Y-coordinate of the axis vector
    az : float
        Z-coordinate of the axis vector

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_3d(self._geom, angle, ax, ay, az)
    return Geometry.from_sfcgal_geometry(geom)

rotate_x(angle=0.0)

Rotates a geometry around the X axis by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

0.0

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
def rotate_x(self, angle: float = 0.) -> Optional[Geometry]:
    """
    Rotates a geometry around the X axis by a given angle

    Parameters
    ----------
    angle : float, optional
        Rotation angle in radians

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_x(self._geom, angle)
    return Geometry.from_sfcgal_geometry(geom)

rotate_y(angle=0.0)

Rotates a geometry around the Y axis by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

0.0

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
def rotate_y(self, angle: float = 0.) -> Optional[Geometry]:
    """
    Rotates a geometry around the Y axis by a given angle

    Parameters
    ----------
    angle : float, optional
        Rotation angle in radians

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_y(self._geom, angle)
    return Geometry.from_sfcgal_geometry(geom)

rotate_z(angle=0.0)

Rotates a geometry around the Z axis by a given angle

Parameters:

Name Type Description Default
angle float

Rotation angle in radians

0.0

Returns:

Type Description
Geometry

The rotated geometry

Source code in pysfcgal/sfcgal.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
def rotate_z(self, angle: float = 0.) -> Optional[Geometry]:
    """
    Rotates a geometry around the Z axis by a given angle

    Parameters
    ----------
    angle : float, optional
        Rotation angle in radians

    Returns
    -------
    Geometry
        The rotated geometry
    """
    geom = lib.sfcgal_geometry_rotate_z(self._geom, angle)
    return Geometry.from_sfcgal_geometry(geom)

round(r)

Round the geometry to a specified precision.

Parameters:

Name Type Description Default
r float

The precision to which to round the geometry.

required

Returns:

Type Description
float

The rounded geometry.

Source code in pysfcgal/sfcgal.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
@cond_icontract(lambda self, r: self.is_valid(), "require")
def round(self, r: int) -> Optional[Geometry]:
    """
    Round the geometry to a specified precision.

    Parameters
    ----------
    r : float
        The precision to which to round the geometry.

    Returns
    -------
    float
        The rounded geometry.
    """
    geom = lib.sfcgal_geometry_round(self._geom, r)
    return Geometry.from_sfcgal_geometry(geom)

scale(fx=1.0, fy=1.0, fz=1.0)

Scale a geometry by different factors for each dimension

Parameters:

Name Type Description Default
fx float

Scaling factor for x dimension, 1. by default (identity scale)

1.0
fy float

Scaling factor for y dimension, 1. by default (identity scale)

1.0
fz float

Scaling factor for z dimension, 1. by default (identity scale)

1.0

Returns:

Type Description
Geometry

Scaled geometry

Source code in pysfcgal/sfcgal.py
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
def scale(
        self, fx: float = 1., fy: float = 1., fz: float = 1.) -> Optional[Geometry]:
    """Scale a geometry by different factors for each dimension

    Parameters
    ----------
    fx : float, optional
        Scaling factor for x dimension, 1. by default (identity scale)
    fy : float, optional
        Scaling factor for y dimension, 1. by default (identity scale)
    fz : float, optional
        Scaling factor for z dimension, 1. by default (identity scale)

    Returns
    -------
    Geometry
        Scaled geometry
    """
    geom = lib.sfcgal_geometry_scale_3d(self._geom, fx, fy, fz)
    return Geometry.from_sfcgal_geometry(geom)

scale_around_center(fx, fy, fz, cx, cy, cz)

Scale a geometry by different factors for each dimension around a center point

Parameters:

Name Type Description Default
fx float

Scaling factor for x dimension

required
fy float

Scaling factor for y dimension

required
fz float

Scaling factor for z dimension

required
cx float

X-coordinate of the center point

required
cy float

Y-coordinate of the center point

required
cz float

Z-coordinate of the center point

required
Source code in pysfcgal/sfcgal.py
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
def scale_around_center(
        self, fx: float, fy: float, fz: float, cx: float, cy: float, cz: float
) -> Optional[Geometry]:
    """
    Scale a geometry by different factors for each dimension around a center point

    Parameters
    ----------
    fx : float
        Scaling factor for x dimension
    fy : float
        Scaling factor for y dimension
    fz : float
        Scaling factor for z dimension
    cx : float
        X-coordinate of the center point
    cy : float
        Y-coordinate of the center point
    cz : float
        Z-coordinate of the center point

    """
    geom = lib.sfcgal_geometry_scale_3d_around_center(
        self._geom, fx, fy, fz, cx, cy, cz
    )
    return Geometry.from_sfcgal_geometry(geom)

scale_uniform(factor=1.0)

Scale a geometry by a given factor

Parameters:

Name Type Description Default
factor float

Scaling factor, 1. by default (identity scale)

1.0

Returns:

Type Description
Geometry

Scaled geometry

Source code in pysfcgal/sfcgal.py
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
def scale_uniform(self, factor: float = 1.) -> Optional[Geometry]:
    """Scale a geometry by a given factor

    Parameters
    ----------
    factor : float, optional
        Scaling factor, 1. by default (identity scale)

    Returns
    -------
    Geometry
        Scaled geometry
    """
    return self.scale(factor, factor, factor)

segment_visibility(other_a, other_b)

Compute the visibility of a segment between two points from a polygon geometry.

Parameters:

Name Type Description Default
other_a Geometry

The first point geometry defining one endpoint of the segment.

required
other_b Geometry

The second point geometry defining the other endpoint of the segment.

required

Returns:

Type Description
Geometry

The resulting geometry representing the visibility along the segment between the two points.

Source code in pysfcgal/sfcgal.py
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
@cond_icontract(
    lambda self, other_a, other_b: (
        self.is_valid()
        and self.geom_type == "Polygon"
        and other_a.is_valid()
        and other_a.geom_type == "Point"
        and other_b.is_valid()
        and other_b.geom_type == "Point"
        and self.has_exterior_edge(other_a, other_b)
    ),
    "require",
)
def segment_visibility(
        self, other_a: Geometry, other_b: Geometry) -> Optional[Geometry]:
    """
    Compute the visibility of a segment between two points from a polygon geometry.

    Parameters
    ----------
    other_a : Geometry
        The first point geometry defining one endpoint of the segment.
    other_b : Geometry
        The second point geometry defining the other endpoint of the segment.

    Returns
    -------
    Geometry
        The resulting geometry representing the visibility along the segment between
        the two points.
    """
    geom = lib.sfcgal_geometry_visibility_segment(
        self._geom, other_a._geom, other_b._geom
    )
    return Geometry.from_sfcgal_geometry(geom)

sfcgal_geom_from_wkb(wkb) staticmethod

Internal function to read a Well-Known Binary (WKB) representation and return the SFCGAL geometry object.

This function accepts a WKB representation in either binary format (bytes or bytearray) or hexadecimal string format, converts it into a UTF-8 encoded byte string, and uses the SFCGAL library to generate the corresponding geometry object.

Parameters:

Name Type Description Default
wkb bytes, bytearray, or str

The Well-Known Binary (WKB) data representing the geometry. - If a bytes or bytearray object is provided, it is automatically converted to a hexadecimal string. - If a str is provided, it must already be a hexadecimal string.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Point

Source code in pysfcgal/sfcgal.py
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
@staticmethod
def sfcgal_geom_from_wkb(wkb: Union[str, bytes, bytearray]) -> ffi.CData:
    """Internal function to read a Well-Known Binary (WKB) representation
    and return the SFCGAL geometry object.

    This function accepts a WKB representation in either binary format
    (bytes or bytearray) or hexadecimal string format,
    converts it into a UTF-8 encoded byte string, and uses the SFCGAL
    library to generate the corresponding geometry object.

    Parameters
    ----------
    wkb : bytes, bytearray, or str
        The Well-Known Binary (WKB) data representing the geometry.
        - If a `bytes` or `bytearray` object is provided, it is automatically
        converted to a hexadecimal string.
        - If a `str` is provided, it must already be a hexadecimal string.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Point

    """
    if isinstance(wkb, (bytes, bytearray)):
        wkb = wkb.hex()
    elif not isinstance(wkb, str):
        raise TypeError("WKB must be a hexadecimal str or data binary")
    wkb = bytes(wkb, encoding="utf-8")
    return lib.sfcgal_io_read_wkb(wkb, len(wkb))

sfcgal_geom_from_wkt(wkt) staticmethod

Internal function to read Well-Known Text (WKT) and return the SFCGAL geometry object.

This function converts the WKT string into a UTF-8 encoded byte string, and uses the SFCGAL library to create a geometry object from the WKT.

Parameters:

Name Type Description Default
wkt str

The Well-Known Text (WKT) string representing the geometry.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Point

Source code in pysfcgal/sfcgal.py
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
@staticmethod
def sfcgal_geom_from_wkt(wkt: str) -> ffi.CData:
    """
    Internal function to read Well-Known Text (WKT) and return the
    SFCGAL geometry object.

    This function converts the WKT string into a UTF-8 encoded byte string,
    and uses the SFCGAL library to create a geometry object from the WKT.

    Parameters
    ----------
    wkt : str
        The Well-Known Text (WKT) string representing the geometry.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Point

    """
    wkt_bytes = bytes(wkt, encoding="utf-8")
    return lib.sfcgal_io_read_wkt(wkt_bytes, len(wkt_bytes))

straight_skeleton()

Compute the straight skeleton of the geometry.

Returns:

Type Description
Geometry

The resulting straight skeleton geometry.

Source code in pysfcgal/sfcgal.py
604
605
606
607
608
609
610
611
612
613
614
615
@cond_icontract(lambda self: self.is_valid(), "require")
def straight_skeleton(self) -> Optional[Geometry]:
    """
    Compute the straight skeleton of the geometry.

    Returns
    -------
    Geometry
        The resulting straight skeleton geometry.
    """
    geom = lib.sfcgal_geometry_straight_skeleton(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

straight_skeleton_distance_in_m()

Compute the straight skeleton distance in meters.

Returns:

Type Description
Geometry

The resulting geometry representing the straight skeleton distance.

Source code in pysfcgal/sfcgal.py
617
618
619
620
621
622
623
624
625
626
627
628
@cond_icontract(lambda self: self.is_valid(), "require")
def straight_skeleton_distance_in_m(self) -> Optional[Geometry]:
    """
    Compute the straight skeleton distance in meters.

    Returns
    -------
    Geometry
        The resulting geometry representing the straight skeleton distance.
    """
    geom = lib.sfcgal_geometry_straight_skeleton_distance_in_m(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

straight_skeleton_partition()

Returns the straight skeleton partition for the given Polygon

Returns:

Type Description
Geometry

Partition of the Polygon straight skeleton

Source code in pysfcgal/sfcgal.py
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
@cond_icontract(
    lambda self: (
        self.is_valid()
        and self.geom_type in ("MultiPolygon", "Polygon", "Triangle")
    ),
    "require",
)
def straight_skeleton_partition(self):
    """Returns the straight skeleton partition for the given Polygon

    Returns
    -------
    Geometry
        Partition of the Polygon straight skeleton
    """
    geom = lib.sfcgal_geometry_straight_skeleton_partition(self._geom, True)
    return Geometry.from_sfcgal_geometry(geom)

tessellate()

Perform tessellation on the geometry.

Returns:

Type Description
Geometry

The tessellated geometry.

Source code in pysfcgal/sfcgal.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
@cond_icontract(lambda self: self.is_valid(), "require")
def tessellate(self) -> Optional[Geometry]:
    """
    Perform tessellation on the geometry.

    Returns
    -------
    Geometry
        The tessellated geometry.
    """
    tri = lib.sfcgal_geometry_triangulate_2dz(self._geom)
    geom = lib.sfcgal_geometry_intersection(self._geom, tri)

    return Geometry.from_sfcgal_geometry(geom)

to_coordinates()

Generates the coordinates of the Geometry.

Raises:

Type Description
NotImplementedError

The method must be implemented only in child classes.

Source code in pysfcgal/sfcgal.py
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
def to_coordinates(self):
    """Generates the coordinates of the Geometry.

    Raises
    ------
    NotImplementedError
        The method must be implemented only in child classes.
    """
    raise NotImplementedError(
        "to_coordinates is implemented only for child classes!"
    )

to_dict()

Generates a geojson-like dictionary that represents the Geometry.

This dictionary contains a 'type' key which depicts the geometry type (e.g. Point, MultiLineString, Tin, ...) and a 'coordinates' key that contains the geometry point coordinates.

Source code in pysfcgal/sfcgal.py
1372
1373
1374
1375
1376
1377
1378
1379
1380
def to_dict(self) -> dict:
    """Generates a geojson-like dictionary that represents the Geometry.

    This dictionary contains a 'type' key which depicts the geometry type
    (e.g. Point, MultiLineString, Tin, ...) and a 'coordinates' key that contains
    the geometry point coordinates.

    """
    return {"type": self.geom_type, "coordinates": self.to_coordinates()}

to_obj()

Export the geometry to a OBJ string, i.e. basically the content of a OBJ file.

Returns:

Type Description
str

OBJ representation of the geometry

Source code in pysfcgal/sfcgal.py
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
def to_obj(self) -> str:
    """
    Export the geometry to a OBJ string, i.e. basically the content of a OBJ file.

    Returns
    -------
    str
        OBJ representation of the geometry
    """
    try:
        buf = ffi.new("char**")
        length = ffi.new("size_t*")
        lib.sfcgal_geometry_as_obj(self._geom, buf, length)
        obj_string = ffi.string(buf[0], length[0]).decode("utf-8")
    finally:
        # we're responsible for free'ing the memory
        if not buf[0] == ffi.NULL:
            lib.free(buf[0])
    return obj_string

to_vtk()

Export the geometry to a VTK string, i.e. basically the content of a VTK file.

Returns:

Type Description
str

VTK representation of the geometry

Source code in pysfcgal/sfcgal.py
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
def to_vtk(self) -> str:
    """
    Export the geometry to a VTK string, i.e. basically the content of a VTK file.

    Returns
    -------
    str
        VTK representation of the geometry
    """
    try:
        buf = ffi.new("char**")
        length = ffi.new("size_t*")
        lib.sfcgal_geometry_as_vtk(self._geom, buf, length)
        vtk_string = ffi.string(buf[0], length[0]).decode("utf-8")
    finally:
        # we're responsible for free'ing the memory
        if not buf[0] == ffi.NULL:
            lib.free(buf[0])
    return vtk_string

to_wkb(as_hex=False)

Convert a geometry object into its Well-Known Binary (WKB) or Hexadecimal WKB representation.

This function takes a geometry object and returns its WKB representation as a binary string, or as a hexadecimal string if as_hex is set to True. It handles memory allocation for the generated WKB and ensures that memory is properly freed after use.

Parameters:

Name Type Description Default
as_hex bool

If True, the function returns the geometry's WKB as a hexadecimal string. If False (default), the WKB is returned as a binary string.

False

Returns:

Type Description
Union[str, bytes]

WKB representation of the geometry

Source code in pysfcgal/sfcgal.py
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
def to_wkb(self, as_hex: bool = False) -> str:
    """Convert a geometry object into its Well-Known Binary (WKB) or Hexadecimal WKB
    representation.

    This function takes a geometry object and returns its WKB representation as a
    binary string, or as a hexadecimal string if `as_hex` is set to True. It handles
    memory allocation for the generated WKB and ensures that memory is properly
    freed after use.

    Parameters
    ----------
    as_hex : bool, optional
        If True, the function returns the geometry's WKB as a hexadecimal string.
        If False (default), the WKB is returned as a binary string.

    Returns
    -------
    Union[str, bytes]
        WKB representation of the geometry

    """
    try:
        buf = ffi.new("char**")
        length = ffi.new("size_t*")
        if as_hex:
            lib.sfcgal_geometry_as_hexwkb(self._geom, buf, length)
        else:
            lib.sfcgal_geometry_as_wkb(self._geom, buf, length)

        wkb = ffi.buffer(buf[0], length[0])[:]
    finally:
        # we're responsible for free'ing the memory
        if not buf[0] == ffi.NULL:
            lib.free(buf[0])
    return wkb.decode("utf-8") if as_hex else wkb

to_wkt(decim=-1)

Convert a geometry object into its Well-Known Text (WKT) representation.

This function takes a geometry object and returns its WKT representation as a string. If the decim parameter is provided and is non-negative, the WKT will include a specific number of decimal places.

Parameters:

Name Type Description Default
decim int

The number of decimal places to include in the WKT output. If decim is negative (default), the WKT is returned without a specific decimal precision.

-1

Returns:

Type Description
str

The Well-Known Text (WKT) representation of the geometry.

Source code in pysfcgal/sfcgal.py
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
def to_wkt(self, decim: int = -1) -> str:
    """Convert a geometry object into its Well-Known Text (WKT) representation.

    This function takes a geometry object and returns its WKT representation as a
    string.
    If the `decim` parameter is provided and is non-negative, the WKT will include
    a specific number of decimal places.

    Parameters
    ----------
    decim : int, optional
        The number of decimal places to include in the WKT output.
        If `decim` is negative (default), the WKT is returned without a specific
        decimal precision.

    Returns
    -------
    str
        The Well-Known Text (WKT) representation of the geometry.

    """
    wkt = ""
    try:
        buf = ffi.new("char**")
        length = ffi.new("size_t*")
        if decim >= 0:
            lib.sfcgal_geometry_as_text_decim(self._geom, decim, buf, length)
        else:
            lib.sfcgal_geometry_as_text(self._geom, buf, length)
        wkt = ffi.string(buf[0], length[0]).decode("utf-8")
    finally:
        # we're responsible for free'ing the memory
        if not buf[0] == ffi.NULL:
            lib.free(buf[0])
    return wkt

translate(dx=0, dy=0)

Translate a geometry by a 2D vector, hence producing a 2D-geometry as an output.

Parameters:

Name Type Description Default
dx float

x component of the translation vector

0
dy float

y component of the translation vector

0

Returns:

Type Description
Geometry

A 2D geometry translated from the current geometry

Source code in pysfcgal/sfcgal.py
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def translate(self, dx: float = 0, dy: float = 0) -> Optional[Geometry]:
    """Translate a geometry by a 2D vector, hence producing a
    2D-geometry as an output.

    Parameters
    ----------
    dx : float, optional
        x component of the translation vector
    dy : float, optional
        y component of the translation vector

    Returns
    -------
    Geometry
        A 2D geometry translated from the current geometry
    """
    translated_geom = lib.sfcgal_geometry_translate_2d(self._geom, dx, dy)
    return Geometry.from_sfcgal_geometry(translated_geom)

translate_2d(dx=0, dy=0)

This method is an alias for the translate function.

.. deprecated:: 2.0.0 translate_2d will be removed in v3.0.0, it is replaced by translate in order to be consistent in the function naming.

Parameters:

Name Type Description Default
dx float

x component of the translation vector

0
dy float

y component of the translation vector

0

Returns:

Type Description
Geometry

A 2D geometry translated from the current geometry

Source code in pysfcgal/sfcgal.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
def translate_2d(self, dx: float = 0, dy: float = 0) -> Optional[Geometry]:
    """
    This method is an alias for the `translate` function.

    .. deprecated:: 2.0.0
            `translate_2d` will be removed in v3.0.0, it is replaced by
            `translate` in order to be consistent in the function naming.

    Parameters
    ----------
    dx : float, optional
        x component of the translation vector
    dy : float, optional
        y component of the translation vector

    Returns
    -------
    Geometry
        A 2D geometry translated from the current geometry
    """
    return self.translate(dx, dy)

translate_3d(dx=0, dy=0, dz=0)

Translate a geometry by a 3D vector, hence producing a 3D-geometry as an output.

If the current geometry is 2D, the starting Z coordinates is assumed to be 0.

Parameters:

Name Type Description Default
dx float

x component of the translation vector

0
dy float

y component of the translation vector

0
dz float

z component of the translation vector

0

Returns:

Type Description
Geometry

A 3D geometry translated from the current geometry

Source code in pysfcgal/sfcgal.py
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
def translate_3d(
        self, dx: float = 0, dy: float = 0, dz: float = 0) -> Optional[Geometry]:
    """
    Translate a geometry by a 3D vector, hence producing a 3D-geometry as an output.

    If the current geometry is 2D, the starting Z coordinates is assumed to be 0.

    Parameters
    ----------
    dx : float, optional
        x component of the translation vector
    dy : float, optional
        y component of the translation vector
    dz : float, optional
        z component of the translation vector

    Returns
    -------
    Geometry
        A 3D geometry translated from the current geometry
    """
    translated_geom = lib.sfcgal_geometry_translate_3d(self._geom, dx, dy, dz)
    return Geometry.from_sfcgal_geometry(translated_geom)

triangulate_2dz()

Compute the 2D triangulation of the geometry with Z values.

Returns:

Type Description
Geometry

The resulting triangulated geometry with Z values.

Source code in pysfcgal/sfcgal.py
415
416
417
418
419
420
421
422
423
424
425
426
@cond_icontract(lambda self: self.is_valid(), "require")
def triangulate_2dz(self) -> Optional[Geometry]:
    """
    Compute the 2D triangulation of the geometry with Z values.

    Returns
    -------
    Geometry
        The resulting triangulated geometry with Z values.
    """
    geom = lib.sfcgal_geometry_triangulate_2dz(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

union(other)

Compute the union of this geometry and another in 2D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the union with.

required

Returns:

Type Description
Geometry

The resulting geometry after the union operation.

Source code in pysfcgal/sfcgal.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def union(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the union of this geometry and another in 2D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the union with.

    Returns
    -------
    Geometry
        The resulting geometry after the union operation.
    """
    geom = lib.sfcgal_geometry_union(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

union_3d(other)

Compute the union of this geometry and another in 3D.

Parameters:

Name Type Description Default
other Geometry

The other geometry to compute the 3D union with.

required

Returns:

Type Description
Geometry

The resulting 3D geometry after the union operation.

Source code in pysfcgal/sfcgal.py
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
@cond_icontract(lambda self, other: self.is_valid() and other.is_valid(), "require")
def union_3d(self, other: Geometry) -> Optional[Geometry]:
    """
    Compute the union of this geometry and another in 3D.

    Parameters
    ----------
    other : Geometry
        The other geometry to compute the 3D union with.

    Returns
    -------
    Geometry
        The resulting 3D geometry after the union operation.
    """
    geom = lib.sfcgal_geometry_union_3d(self._geom, other._geom)
    return Geometry.from_sfcgal_geometry(geom)

volume()

Return the volume of the geometry.

Returns:

Type Description
float

The volume of the geometry.

Source code in pysfcgal/sfcgal.py
201
202
203
204
205
206
207
208
209
210
211
@cond_icontract(lambda self: self.is_valid(), "require")
def volume(self) -> float:
    """
    Return the volume of the geometry.

    Returns
    -------
    float
        The volume of the geometry.
    """
    return lib.sfcgal_geometry_volume(self._geom)

wrap()

Wrap the SFCGAL geometry attribute of the current instance in a new geometry instance. This method produces a deep copy of the geometry instance.

Returns:

Type Description
Geometry

A cloned Geometry of the current instance

Source code in pysfcgal/sfcgal.py
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
def wrap(self) -> Optional[Geometry]:
    """Wrap the SFCGAL geometry attribute of the current instance in a new geometry
    instance. This method produces a deep copy of the geometry instance.

    Returns
    -------
    Geometry
        A cloned Geometry of the current instance

    """
    return Geometry.from_sfcgal_geometry(lib.sfcgal_geometry_clone(self._geom))

write_obj(filename)

Export the geometry to a OBJ file.

Parameters:

Name Type Description Default
filename str

The name of the file to which the geometry will be exported.

required
Source code in pysfcgal/sfcgal.py
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
def write_obj(self, filename: str) -> None:
    """
    Export the geometry to a OBJ file.

    Parameters
    ----------
    filename : str
        The name of the file to which the geometry will be exported.

    """
    return lib.sfcgal_geometry_as_obj_file(self._geom, bytes(filename, 'utf-8'))

write_vtk(filename)

Export the geometry to a VTK file.

Parameters:

Name Type Description Default
filename str

The name of the file to which the geometry will be exported.

required
Source code in pysfcgal/sfcgal.py
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
def write_vtk(self, filename: str) -> None:
    """
    Export the geometry to a VTK file.

    Parameters
    ----------
    filename : str
        The name of the file to which the geometry will be exported.

    """
    return lib.sfcgal_geometry_as_vtk_file(self._geom, bytes(filename, 'utf-8'))

y_monotone_partition_2(allow_holes=False, nb_components=1)

Compute the Y-monotone partition of the geometry in 2D.

Parameters:

Name Type Description Default
allow_holes bool

Whether to allow holes in the partition (default is False).

False
nb_components int

The number of components to consider (default is 1).

1

Returns:

Type Description
Geometry

The resulting Y-monotone partition geometry.

Source code in pysfcgal/sfcgal.py
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
@cond_icontract(lambda self, allow_holes, nb_components: self.is_valid(), "require")
def y_monotone_partition_2(
    self, allow_holes: bool = False, nb_components: int = 1
) -> Optional[Geometry]:
    """
    Compute the Y-monotone partition of the geometry in 2D.

    Parameters
    ----------
    allow_holes : bool, optional
        Whether to allow holes in the partition (default is False).
    nb_components : int, optional
        The number of components to consider (default is 1).

    Returns
    -------
    Geometry
        The resulting Y-monotone partition geometry.
    """
    geom = lib.sfcgal_y_monotone_partition_2(self._geom)
    return Geometry.from_sfcgal_geometry(geom)

GeometryCollection

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
class GeometryCollection(GeometryCollectionBase):
    def __init__(self):
        self._geom = lib.sfcgal_geometry_collection_create()

    def addGeometry(self, geometry):
        clone = lib.sfcgal_geometry_clone(geometry._geom)
        lib.sfcgal_geometry_collection_add_geometry(self._geom, clone)

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, GeometryCollection):
            return False
        return all(
            isinstance(other_geom, type(geom)) and geom == other_geom
            for geom, other_geom in zip(self, other)
        )

    def from_coordinates(self):
        """Instantiates a Point starting from a list of coordinates.

        Raises
        ------
        NotImplementedError
            This method is not supported (yet?). That's sounds too hard to infer the
            geometry type from a random coordinates structure.

        """
        raise NotImplementedError(
            "The 'from_coordinates' method is not implemented for GeometryCollection."
        )

    def to_dict(self) -> dict:
        """Generates a geojson-like dict representation of the GeometryCollection.

        This case differs from the general case, as the dictionary contains 'type' and
        'geometries' keys instead of 'type' and 'coordinates'. The 'geometries' key
        refers to the list of the dictionary representations of the geometries that
        belong the collection.

        Returns
        -------
        dict
            Geojson-like representation of the geometry collection

        """
        return {"type": self.geom_type, "geometries": [geom.to_dict() for geom in self]}

    @classmethod
    def from_dict(cls, geojson_data: dict) -> GeometryCollection:
        """Instantiates a GeometryCollection starting from a geojson-like dictionnary.

        The dictionary must contain 'type' and 'geometries' keys; the 'type' value
        should be 'GeometryCollection'. The 'geometries' values should be a list of
        valid geojson-like dictionaries that represents the geometries within the
        collection.

        Parameters
        ----------
        geojson_data : dict
            Description of the collection, in a geojson-like format

        Returns
        -------
        GeometryCollection
            An instance of GeometryCollection
        """
        if geojson_data.get("type") is None:
            raise KeyError("There is no 'type' key in the provided data.")
        if geojson_data["type"] != "GeometryCollection":
            raise ValueError(
                f"The provided 'type' ({geojson_data['type']}) "
                "should be 'GeometryCollection'."
            )
        if geojson_data.get("geometries") is None:
            raise KeyError("There is no 'geometries' key in the provided data.")
        collection = lib.sfcgal_geometry_collection_create()
        for geojson_geometry in geojson_data["geometries"]:
            geom_type = geojson_geometry["type"]
            geometry_cls = geom_type_to_cls[geom_types[geom_type]]
            geometry = geometry_cls.sfcgal_geom_from_coordinates(  # type: ignore
                geojson_geometry["coordinates"]
            )
            lib.sfcgal_geometry_collection_add_geometry(collection, geometry)
        return cast(
            GeometryCollection, GeometryCollection.from_sfcgal_geometry(collection))

from_coordinates()

Instantiates a Point starting from a list of coordinates.

Raises:

Type Description
NotImplementedError

This method is not supported (yet?). That's sounds too hard to infer the geometry type from a random coordinates structure.

Source code in pysfcgal/sfcgal.py
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
def from_coordinates(self):
    """Instantiates a Point starting from a list of coordinates.

    Raises
    ------
    NotImplementedError
        This method is not supported (yet?). That's sounds too hard to infer the
        geometry type from a random coordinates structure.

    """
    raise NotImplementedError(
        "The 'from_coordinates' method is not implemented for GeometryCollection."
    )

from_dict(geojson_data) classmethod

Instantiates a GeometryCollection starting from a geojson-like dictionnary.

The dictionary must contain 'type' and 'geometries' keys; the 'type' value should be 'GeometryCollection'. The 'geometries' values should be a list of valid geojson-like dictionaries that represents the geometries within the collection.

Parameters:

Name Type Description Default
geojson_data dict

Description of the collection, in a geojson-like format

required

Returns:

Type Description
GeometryCollection

An instance of GeometryCollection

Source code in pysfcgal/sfcgal.py
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
@classmethod
def from_dict(cls, geojson_data: dict) -> GeometryCollection:
    """Instantiates a GeometryCollection starting from a geojson-like dictionnary.

    The dictionary must contain 'type' and 'geometries' keys; the 'type' value
    should be 'GeometryCollection'. The 'geometries' values should be a list of
    valid geojson-like dictionaries that represents the geometries within the
    collection.

    Parameters
    ----------
    geojson_data : dict
        Description of the collection, in a geojson-like format

    Returns
    -------
    GeometryCollection
        An instance of GeometryCollection
    """
    if geojson_data.get("type") is None:
        raise KeyError("There is no 'type' key in the provided data.")
    if geojson_data["type"] != "GeometryCollection":
        raise ValueError(
            f"The provided 'type' ({geojson_data['type']}) "
            "should be 'GeometryCollection'."
        )
    if geojson_data.get("geometries") is None:
        raise KeyError("There is no 'geometries' key in the provided data.")
    collection = lib.sfcgal_geometry_collection_create()
    for geojson_geometry in geojson_data["geometries"]:
        geom_type = geojson_geometry["type"]
        geometry_cls = geom_type_to_cls[geom_types[geom_type]]
        geometry = geometry_cls.sfcgal_geom_from_coordinates(  # type: ignore
            geojson_geometry["coordinates"]
        )
        lib.sfcgal_geometry_collection_add_geometry(collection, geometry)
    return cast(
        GeometryCollection, GeometryCollection.from_sfcgal_geometry(collection))

to_dict()

Generates a geojson-like dict representation of the GeometryCollection.

This case differs from the general case, as the dictionary contains 'type' and 'geometries' keys instead of 'type' and 'coordinates'. The 'geometries' key refers to the list of the dictionary representations of the geometries that belong the collection.

Returns:

Type Description
dict

Geojson-like representation of the geometry collection

Source code in pysfcgal/sfcgal.py
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
def to_dict(self) -> dict:
    """Generates a geojson-like dict representation of the GeometryCollection.

    This case differs from the general case, as the dictionary contains 'type' and
    'geometries' keys instead of 'type' and 'coordinates'. The 'geometries' key
    refers to the list of the dictionary representations of the geometries that
    belong the collection.

    Returns
    -------
    dict
        Geojson-like representation of the geometry collection

    """
    return {"type": self.geom_type, "geometries": [geom.to_dict() for geom in self]}

GeometryCollectionBase

Bases: Geometry

Source code in pysfcgal/sfcgal.py
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
class GeometryCollectionBase(Geometry):
    @property
    def geoms(self):
        """Return the geometries in the collection.

        Returns
        -------
        GeometrySequence
            A sequence of geometries contained in this collection.
        """
        return GeometrySequence(self)

    def __len__(self):
        """Return the number of geometries in the collection.

        Returns
        -------
        int
            The number of geometries in the collection.
        """
        return len(self.geoms)

    def __iter__(self):
        """Iterate over the geometries in the collection.

        Yields
        ------
        Geometry
            Each geometry in the collection.
        """
        return self.geoms.__iter__()

    def __getitem__(self, index):
        """Get a geometry (or several) within the collection, identified through an
        index.

        Raises an IndexError if the index is invalid for the geometry collection.

        Parameters
        ----------
        index : int
            Index of the geometry to recover.

        Returns
        -------
        Geometry
            The geometry at the specified index.
        """
        return self.geoms[index]

    def __eq__(self, other: object) -> bool:
        """Check if two geometry collections are equal based on their geometries.

        Parameters
        ----------
        other : GeometryCollectionBase
            The other geometry collection to compare.

        Returns
        -------
        bool
            True if both collections contain the same geometries, False otherwise.
        """
        if not isinstance(other, GeometryCollectionBase):
            return False
        return self.geoms == other.geoms

    def to_coordinates(self):
        """Generates the coordinates for every geometry collection.

        Uses the __iter__ property of the class to iterate over the geometries.

        Returns
        -------
        list
            List of the coordinates of each geometry in the collection
        """
        return [geom.to_coordinates() for geom in self]

geoms property

Return the geometries in the collection.

Returns:

Type Description
GeometrySequence

A sequence of geometries contained in this collection.

__eq__(other)

Check if two geometry collections are equal based on their geometries.

Parameters:

Name Type Description Default
other GeometryCollectionBase

The other geometry collection to compare.

required

Returns:

Type Description
bool

True if both collections contain the same geometries, False otherwise.

Source code in pysfcgal/sfcgal.py
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
def __eq__(self, other: object) -> bool:
    """Check if two geometry collections are equal based on their geometries.

    Parameters
    ----------
    other : GeometryCollectionBase
        The other geometry collection to compare.

    Returns
    -------
    bool
        True if both collections contain the same geometries, False otherwise.
    """
    if not isinstance(other, GeometryCollectionBase):
        return False
    return self.geoms == other.geoms

__getitem__(index)

Get a geometry (or several) within the collection, identified through an index.

Raises an IndexError if the index is invalid for the geometry collection.

Parameters:

Name Type Description Default
index int

Index of the geometry to recover.

required

Returns:

Type Description
Geometry

The geometry at the specified index.

Source code in pysfcgal/sfcgal.py
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
def __getitem__(self, index):
    """Get a geometry (or several) within the collection, identified through an
    index.

    Raises an IndexError if the index is invalid for the geometry collection.

    Parameters
    ----------
    index : int
        Index of the geometry to recover.

    Returns
    -------
    Geometry
        The geometry at the specified index.
    """
    return self.geoms[index]

__iter__()

Iterate over the geometries in the collection.

Yields:

Type Description
Geometry

Each geometry in the collection.

Source code in pysfcgal/sfcgal.py
2359
2360
2361
2362
2363
2364
2365
2366
2367
def __iter__(self):
    """Iterate over the geometries in the collection.

    Yields
    ------
    Geometry
        Each geometry in the collection.
    """
    return self.geoms.__iter__()

__len__()

Return the number of geometries in the collection.

Returns:

Type Description
int

The number of geometries in the collection.

Source code in pysfcgal/sfcgal.py
2349
2350
2351
2352
2353
2354
2355
2356
2357
def __len__(self):
    """Return the number of geometries in the collection.

    Returns
    -------
    int
        The number of geometries in the collection.
    """
    return len(self.geoms)

to_coordinates()

Generates the coordinates for every geometry collection.

Uses the iter property of the class to iterate over the geometries.

Returns:

Type Description
list

List of the coordinates of each geometry in the collection

Source code in pysfcgal/sfcgal.py
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
def to_coordinates(self):
    """Generates the coordinates for every geometry collection.

    Uses the __iter__ property of the class to iterate over the geometries.

    Returns
    -------
    list
        List of the coordinates of each geometry in the collection
    """
    return [geom.to_coordinates() for geom in self]

GeometrySequence

Source code in pysfcgal/sfcgal.py
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
class GeometrySequence:
    def __init__(self, parent):
        """Initialize the GeometrySequence with a parent GeometryCollection.

        Parameters
        ----------
        parent : GeometryCollectionBase
            The parent geometry collection that this sequence belongs to.
        """
        # keep reference to parent to avoid garbage collection
        self._parent = parent

    def __iter__(self):
        """Iterate over the geometries in the sequence.

        Yields
        ------
        Geometry
            Each geometry in the sequence as a Geometry object.
        """
        for n in range(0, len(self)):
            yield Geometry.from_sfcgal_geometry(
                lib.sfcgal_geometry_collection_geometry_n(self._parent._geom, n),
                owned=False,
            )

    def __len__(self):
        """Get the number of geometries in the sequence.

        Returns
        -------
        int
            The number of geometries in the collection.
        """
        return lib.sfcgal_geometry_collection_num_geometries(self._parent._geom)

    def __get_geometry_n(self, n):
        """Retrieve the n-th geometry in the sequence.

        Parameters
        ----------
        n : int
            The index of the geometry to retrieve.

        Returns
        -------
        Geometry
            The geometry at the specified index.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_geometry_collection_geometry_n(self._parent._geom, n),
            owned=False,
        )

    def __getitem__(self, key):
        """Get a geometry (or several) within the sequence, identified through an index
        or a slice.

        Raises an IndexError if the key is invalid for the geometry.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the geometry or geometries to recover.

        Returns
        -------
        Geometry or list of Geometry
            The geometry or list of geometries at the specified index or slice.
        """
        length = self.__len__()
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_geometry_n(index)
        elif isinstance(key, slice):
            geoms = [
                self.__get_geometry_n(index) for index in range(*key.indices(length))
            ]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Check equality between this geometry sequence and another.

        Parameters
        ----------
        other : GeometrySequence
            The other geometry sequence to compare.

        Returns
        -------
        bool
            True if both geometry sequences are equal, False otherwise.
        """
        if not isinstance(other, GeometrySequence):
            return False
        return self[:] == other[:]

__eq__(other)

Check equality between this geometry sequence and another.

Parameters:

Name Type Description Default
other GeometrySequence

The other geometry sequence to compare.

required

Returns:

Type Description
bool

True if both geometry sequences are equal, False otherwise.

Source code in pysfcgal/sfcgal.py
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
def __eq__(self, other: object) -> bool:
    """Check equality between this geometry sequence and another.

    Parameters
    ----------
    other : GeometrySequence
        The other geometry sequence to compare.

    Returns
    -------
    bool
        True if both geometry sequences are equal, False otherwise.
    """
    if not isinstance(other, GeometrySequence):
        return False
    return self[:] == other[:]

__get_geometry_n(n)

Retrieve the n-th geometry in the sequence.

Parameters:

Name Type Description Default
n int

The index of the geometry to retrieve.

required

Returns:

Type Description
Geometry

The geometry at the specified index.

Source code in pysfcgal/sfcgal.py
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
def __get_geometry_n(self, n):
    """Retrieve the n-th geometry in the sequence.

    Parameters
    ----------
    n : int
        The index of the geometry to retrieve.

    Returns
    -------
    Geometry
        The geometry at the specified index.
    """
    return Geometry.from_sfcgal_geometry(
        lib.sfcgal_geometry_collection_geometry_n(self._parent._geom, n),
        owned=False,
    )

__getitem__(key)

Get a geometry (or several) within the sequence, identified through an index or a slice.

Raises an IndexError if the key is invalid for the geometry.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the geometry or geometries to recover.

required

Returns:

Type Description
Geometry or list of Geometry

The geometry or list of geometries at the specified index or slice.

Source code in pysfcgal/sfcgal.py
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
def __getitem__(self, key):
    """Get a geometry (or several) within the sequence, identified through an index
    or a slice.

    Raises an IndexError if the key is invalid for the geometry.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the geometry or geometries to recover.

    Returns
    -------
    Geometry or list of Geometry
        The geometry or list of geometries at the specified index or slice.
    """
    length = self.__len__()
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_geometry_n(index)
    elif isinstance(key, slice):
        geoms = [
            self.__get_geometry_n(index) for index in range(*key.indices(length))
        ]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(parent)

Initialize the GeometrySequence with a parent GeometryCollection.

Parameters:

Name Type Description Default
parent GeometryCollectionBase

The parent geometry collection that this sequence belongs to.

required
Source code in pysfcgal/sfcgal.py
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
def __init__(self, parent):
    """Initialize the GeometrySequence with a parent GeometryCollection.

    Parameters
    ----------
    parent : GeometryCollectionBase
        The parent geometry collection that this sequence belongs to.
    """
    # keep reference to parent to avoid garbage collection
    self._parent = parent

__iter__()

Iterate over the geometries in the sequence.

Yields:

Type Description
Geometry

Each geometry in the sequence as a Geometry object.

Source code in pysfcgal/sfcgal.py
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
def __iter__(self):
    """Iterate over the geometries in the sequence.

    Yields
    ------
    Geometry
        Each geometry in the sequence as a Geometry object.
    """
    for n in range(0, len(self)):
        yield Geometry.from_sfcgal_geometry(
            lib.sfcgal_geometry_collection_geometry_n(self._parent._geom, n),
            owned=False,
        )

__len__()

Get the number of geometries in the sequence.

Returns:

Type Description
int

The number of geometries in the collection.

Source code in pysfcgal/sfcgal.py
3356
3357
3358
3359
3360
3361
3362
3363
3364
def __len__(self):
    """Get the number of geometries in the sequence.

    Returns
    -------
    int
        The number of geometries in the collection.
    """
    return lib.sfcgal_geometry_collection_num_geometries(self._parent._geom)

LineString

Bases: Geometry

Source code in pysfcgal/sfcgal.py
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
class LineString(Geometry):
    def __init__(self, coords):
        """Initialize a LineString with given coordinates.

        Parameters
        ----------
        coords : list of tuples
            A list of tuples where each tuple represents the coordinates of a point in
            the LineString.
        """
        self._geom = self.sfcgal_geom_from_coordinates(coords)

    def __eq__(self, other: object) -> bool:
        """Two LineStrings are equals if they contain the same points in the same
        order."""
        if not isinstance(other, LineString):
            return False
        if len(self) != len(other):
            return False
        for p, other_p in zip(self, other):
            if not p == other_p:
                return False
        return True

    def __len__(self):
        """Return the number of points in the LineString.

        Returns
        -------
        int
            The number of points in the LineString.
        """
        return lib.sfcgal_linestring_num_points(self._geom)

    def __iter__(self):
        """Iterate over the points in the LineString.

        Yields
        ------
        Point
            The points in the LineString.
        """
        for n in range(len(self)):
            yield Geometry.from_sfcgal_geometry(
                lib.sfcgal_linestring_point_n(self._geom, n),
                owned=False,
            )

    def __get_point_n(self, n):
        """Returns the n-th point within a linestring. This method is internal and makes
        the assumption that the index is valid for the geometry.

        Parameters
        ----------
        n : int
            Index of the point to recover.

        Returns
        -------
        Point
            Point at the index n.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_linestring_point_n(self._geom, n), owned=False
        )

    def __getitem__(self, key):
        """Get a point (or several) within a linestring, identified through an index or
        a slice.

        Raises an IndexError if the key is invalid for the geometry.

        Raises a TypeError if the key is neither an integer or a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the point(s) to recover.

        Returns
        -------
        Point or list of Points
            The Point(s) at the specified index or indices.
        """
        length = self.__len__()
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_point_n(index)
        elif isinstance(key, slice):
            geoms = [self.__get_point_n(index) for index in range(*key.indices(length))]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    @property
    def coords(self):
        """Return the coordinates of the LineString as a CoordinateSequence.

        Returns
        -------
        CoordinateSequence
            A sequence of coordinates representing the points in the LineString.
        """
        return CoordinateSequence(self)

    def has_edge(self, point_a: Point, point_b: Point) -> bool:
        """Check if the LineString contains the edge between two points.

        Parameters
        ----------
        point_a : Point
            The first point of the edge.
        point_b : Point
            The second point of the edge.

        Returns
        -------
        bool
            True if the edge exists in the LineString, False otherwise.
        """
        return is_segment_in_coordsequence(self.to_coordinates(), point_a, point_b)

    @cond_icontract(
        lambda self, radius, segments, buffer_type: (
            self.is_valid() and radius > 0 and segments > 3 and (
                isinstance(buffer_type, BufferType)
                or (isinstance(buffer_type, int) and buffer_type in (0, 1, 2))
            )
        ),
        "require",
    )
    def buffer_3d(
        self, radius: float, segments: int, buffer_type: Union[BufferType, int]
    ) -> Optional[Geometry]:
        """
        Computes a 3D buffer around a LineString

        Parameters
        ----------
        radius : float
            The buffer radius
        segments : int
            The number of segments to use for approximating curved surfaces
        buffer_type : BufferType|int
            Either 0 (SFCGAL_BUFFER3D_ROUND, Minkowski sum with a sphere),
            1 (SFCGAL_BUFFER3D_CYLSPHERE: Union of cylinders and spheres) or
            2 (SFCGAL_BUFFER3D_FLAT: Construction of a disk on the bisector plane)

        Returns
        -------
        Geometry
            The buffered geometry

        """
        if isinstance(buffer_type, BufferType):
            buffer_type = buffer_type.value
        geom = lib.sfcgal_geometry_buffer3d(self._geom, radius, segments, buffer_type)
        return Geometry.from_sfcgal_geometry(geom)

    def to_coordinates(self) -> list:
        """Generates the coordinates of the LineString.

        Uses the __iter__ property of the LineString to iterate over points.

        Returns
        -------
        list
            List of point coordinates.
        """
        return [point.to_coordinates() for point in self]

    @staticmethod
    def sfcgal_geom_from_coordinates(
            coordinates: list, close: bool = False) -> ffi.CData:
        """Instantiates a SFCGAL LineString starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            LineString coordinates.
        close : bool
            If True, the LineString is built as closed even if the coordinates are not,
            i.e. the first point is replicated at the last position.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL LineString

        """
        linestring = lib.sfcgal_linestring_create()
        for coordinate in coordinates:
            cpoint = Point.sfcgal_geom_from_coordinates(coordinate)
            lib.sfcgal_linestring_add_point(linestring, cpoint)
        if close and coordinates[0] != coordinates[-1]:
            cpoint = Point.sfcgal_geom_from_coordinates(coordinates[0])
            lib.sfcgal_linestring_add_point(linestring, cpoint)
        return linestring

coords property

Return the coordinates of the LineString as a CoordinateSequence.

Returns:

Type Description
CoordinateSequence

A sequence of coordinates representing the points in the LineString.

__eq__(other)

Two LineStrings are equals if they contain the same points in the same order.

Source code in pysfcgal/sfcgal.py
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
def __eq__(self, other: object) -> bool:
    """Two LineStrings are equals if they contain the same points in the same
    order."""
    if not isinstance(other, LineString):
        return False
    if len(self) != len(other):
        return False
    for p, other_p in zip(self, other):
        if not p == other_p:
            return False
    return True

__get_point_n(n)

Returns the n-th point within a linestring. This method is internal and makes the assumption that the index is valid for the geometry.

Parameters:

Name Type Description Default
n int

Index of the point to recover.

required

Returns:

Type Description
Point

Point at the index n.

Source code in pysfcgal/sfcgal.py
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
def __get_point_n(self, n):
    """Returns the n-th point within a linestring. This method is internal and makes
    the assumption that the index is valid for the geometry.

    Parameters
    ----------
    n : int
        Index of the point to recover.

    Returns
    -------
    Point
        Point at the index n.
    """
    return Geometry.from_sfcgal_geometry(
        lib.sfcgal_linestring_point_n(self._geom, n), owned=False
    )

__getitem__(key)

Get a point (or several) within a linestring, identified through an index or a slice.

Raises an IndexError if the key is invalid for the geometry.

Raises a TypeError if the key is neither an integer or a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the point(s) to recover.

required

Returns:

Type Description
Point or list of Points

The Point(s) at the specified index or indices.

Source code in pysfcgal/sfcgal.py
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
def __getitem__(self, key):
    """Get a point (or several) within a linestring, identified through an index or
    a slice.

    Raises an IndexError if the key is invalid for the geometry.

    Raises a TypeError if the key is neither an integer or a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the point(s) to recover.

    Returns
    -------
    Point or list of Points
        The Point(s) at the specified index or indices.
    """
    length = self.__len__()
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_point_n(index)
    elif isinstance(key, slice):
        geoms = [self.__get_point_n(index) for index in range(*key.indices(length))]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(coords)

Initialize a LineString with given coordinates.

Parameters:

Name Type Description Default
coords list of tuples

A list of tuples where each tuple represents the coordinates of a point in the LineString.

required
Source code in pysfcgal/sfcgal.py
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
def __init__(self, coords):
    """Initialize a LineString with given coordinates.

    Parameters
    ----------
    coords : list of tuples
        A list of tuples where each tuple represents the coordinates of a point in
        the LineString.
    """
    self._geom = self.sfcgal_geom_from_coordinates(coords)

__iter__()

Iterate over the points in the LineString.

Yields:

Type Description
Point

The points in the LineString.

Source code in pysfcgal/sfcgal.py
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
def __iter__(self):
    """Iterate over the points in the LineString.

    Yields
    ------
    Point
        The points in the LineString.
    """
    for n in range(len(self)):
        yield Geometry.from_sfcgal_geometry(
            lib.sfcgal_linestring_point_n(self._geom, n),
            owned=False,
        )

__len__()

Return the number of points in the LineString.

Returns:

Type Description
int

The number of points in the LineString.

Source code in pysfcgal/sfcgal.py
1812
1813
1814
1815
1816
1817
1818
1819
1820
def __len__(self):
    """Return the number of points in the LineString.

    Returns
    -------
    int
        The number of points in the LineString.
    """
    return lib.sfcgal_linestring_num_points(self._geom)

buffer_3d(radius, segments, buffer_type)

Computes a 3D buffer around a LineString

Parameters:

Name Type Description Default
radius float

The buffer radius

required
segments int

The number of segments to use for approximating curved surfaces

required
buffer_type BufferType | int

Either 0 (SFCGAL_BUFFER3D_ROUND, Minkowski sum with a sphere), 1 (SFCGAL_BUFFER3D_CYLSPHERE: Union of cylinders and spheres) or 2 (SFCGAL_BUFFER3D_FLAT: Construction of a disk on the bisector plane)

required

Returns:

Type Description
Geometry

The buffered geometry

Source code in pysfcgal/sfcgal.py
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
@cond_icontract(
    lambda self, radius, segments, buffer_type: (
        self.is_valid() and radius > 0 and segments > 3 and (
            isinstance(buffer_type, BufferType)
            or (isinstance(buffer_type, int) and buffer_type in (0, 1, 2))
        )
    ),
    "require",
)
def buffer_3d(
    self, radius: float, segments: int, buffer_type: Union[BufferType, int]
) -> Optional[Geometry]:
    """
    Computes a 3D buffer around a LineString

    Parameters
    ----------
    radius : float
        The buffer radius
    segments : int
        The number of segments to use for approximating curved surfaces
    buffer_type : BufferType|int
        Either 0 (SFCGAL_BUFFER3D_ROUND, Minkowski sum with a sphere),
        1 (SFCGAL_BUFFER3D_CYLSPHERE: Union of cylinders and spheres) or
        2 (SFCGAL_BUFFER3D_FLAT: Construction of a disk on the bisector plane)

    Returns
    -------
    Geometry
        The buffered geometry

    """
    if isinstance(buffer_type, BufferType):
        buffer_type = buffer_type.value
    geom = lib.sfcgal_geometry_buffer3d(self._geom, radius, segments, buffer_type)
    return Geometry.from_sfcgal_geometry(geom)

has_edge(point_a, point_b)

Check if the LineString contains the edge between two points.

Parameters:

Name Type Description Default
point_a Point

The first point of the edge.

required
point_b Point

The second point of the edge.

required

Returns:

Type Description
bool

True if the edge exists in the LineString, False otherwise.

Source code in pysfcgal/sfcgal.py
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
def has_edge(self, point_a: Point, point_b: Point) -> bool:
    """Check if the LineString contains the edge between two points.

    Parameters
    ----------
    point_a : Point
        The first point of the edge.
    point_b : Point
        The second point of the edge.

    Returns
    -------
    bool
        True if the edge exists in the LineString, False otherwise.
    """
    return is_segment_in_coordsequence(self.to_coordinates(), point_a, point_b)

sfcgal_geom_from_coordinates(coordinates, close=False) staticmethod

Instantiates a SFCGAL LineString starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

LineString coordinates.

required
close bool

If True, the LineString is built as closed even if the coordinates are not, i.e. the first point is replicated at the last position.

False

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL LineString

Source code in pysfcgal/sfcgal.py
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
@staticmethod
def sfcgal_geom_from_coordinates(
        coordinates: list, close: bool = False) -> ffi.CData:
    """Instantiates a SFCGAL LineString starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        LineString coordinates.
    close : bool
        If True, the LineString is built as closed even if the coordinates are not,
        i.e. the first point is replicated at the last position.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL LineString

    """
    linestring = lib.sfcgal_linestring_create()
    for coordinate in coordinates:
        cpoint = Point.sfcgal_geom_from_coordinates(coordinate)
        lib.sfcgal_linestring_add_point(linestring, cpoint)
    if close and coordinates[0] != coordinates[-1]:
        cpoint = Point.sfcgal_geom_from_coordinates(coordinates[0])
        lib.sfcgal_linestring_add_point(linestring, cpoint)
    return linestring

to_coordinates()

Generates the coordinates of the LineString.

Uses the iter property of the LineString to iterate over points.

Returns:

Type Description
list

List of point coordinates.

Source code in pysfcgal/sfcgal.py
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
def to_coordinates(self) -> list:
    """Generates the coordinates of the LineString.

    Uses the __iter__ property of the LineString to iterate over points.

    Returns
    -------
    list
        List of point coordinates.
    """
    return [point.to_coordinates() for point in self]

MultiLineString

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
class MultiLineString(GeometryCollectionBase):
    def __init__(self, coords: Tuple = ()):
        """Initialize the MultiLineString with a tuple of coordinates.

        Parameters
        ----------
        coords : Tuple
            MultiLineString coordinates.
            If coords is empty, an empty MultiLineString is created.

        Returns
        -------
        MultiLineString
            A MultiLineString with coordinates coords

        """
        self._geom = MultiLineString.sfcgal_geom_from_coordinates(coords)

    @staticmethod
    def sfcgal_geom_from_coordinates(
            coordinates: Tuple, close: bool = False) -> ffi.CData:
        """Instantiates a SFCGAL MultiLineString starting from a tuple of coordinates.

        Parameters
        ----------
        coordinates : Tuple
            MultiLineString coordinates.
        close : bool
            If True, the linestrings are built as closed even if their coordinates are
            not, i.e. their first point is replicated at the last position.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL MultiLineString

        """
        multilinestring = lib.sfcgal_multi_linestring_create()
        for coords in coordinates:
            linestring = LineString.sfcgal_geom_from_coordinates(coords, close=close)
            lib.sfcgal_geometry_collection_add_geometry(multilinestring, linestring)
        return multilinestring

__init__(coords=())

Initialize the MultiLineString with a tuple of coordinates.

Parameters:

Name Type Description Default
coords Tuple

MultiLineString coordinates. If coords is empty, an empty MultiLineString is created.

()

Returns:

Type Description
MultiLineString

A MultiLineString with coordinates coords

Source code in pysfcgal/sfcgal.py
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
def __init__(self, coords: Tuple = ()):
    """Initialize the MultiLineString with a tuple of coordinates.

    Parameters
    ----------
    coords : Tuple
        MultiLineString coordinates.
        If coords is empty, an empty MultiLineString is created.

    Returns
    -------
    MultiLineString
        A MultiLineString with coordinates coords

    """
    self._geom = MultiLineString.sfcgal_geom_from_coordinates(coords)

sfcgal_geom_from_coordinates(coordinates, close=False) staticmethod

Instantiates a SFCGAL MultiLineString starting from a tuple of coordinates.

Parameters:

Name Type Description Default
coordinates Tuple

MultiLineString coordinates.

required
close bool

If True, the linestrings are built as closed even if their coordinates are not, i.e. their first point is replicated at the last position.

False

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL MultiLineString

Source code in pysfcgal/sfcgal.py
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
@staticmethod
def sfcgal_geom_from_coordinates(
        coordinates: Tuple, close: bool = False) -> ffi.CData:
    """Instantiates a SFCGAL MultiLineString starting from a tuple of coordinates.

    Parameters
    ----------
    coordinates : Tuple
        MultiLineString coordinates.
    close : bool
        If True, the linestrings are built as closed even if their coordinates are
        not, i.e. their first point is replicated at the last position.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL MultiLineString

    """
    multilinestring = lib.sfcgal_multi_linestring_create()
    for coords in coordinates:
        linestring = LineString.sfcgal_geom_from_coordinates(coords, close=close)
        lib.sfcgal_geometry_collection_add_geometry(multilinestring, linestring)
    return multilinestring

MultiPoint

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
class MultiPoint(GeometryCollectionBase):
    def __init__(self, coords: Tuple = ()):
        """Initialize the MultiPoint with a tuple of coordinates.

        Parameters
        ----------
        coords : Tuple
            MultiPoint coordinates.
            If coords is empty, an empty MultiPoint is created.

        Returns
        -------
        MultiPoint
            A MultiPoint with coordinates coords

        """
        self._geom = MultiPoint.sfcgal_geom_from_coordinates(coords)

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
        """Instantiates a SFCGAL MultiPoint starting from a tuple of coordinates.

        Parameters
        ----------
        coordinates : Tuple
            MultiPoint coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL MultiPoint

        """
        multipoint = lib.sfcgal_multi_point_create()
        for coords in coordinates:
            point = Point.sfcgal_geom_from_coordinates(coords)
            lib.sfcgal_geometry_collection_add_geometry(multipoint, point)
        return multipoint

__init__(coords=())

Initialize the MultiPoint with a tuple of coordinates.

Parameters:

Name Type Description Default
coords Tuple

MultiPoint coordinates. If coords is empty, an empty MultiPoint is created.

()

Returns:

Type Description
MultiPoint

A MultiPoint with coordinates coords

Source code in pysfcgal/sfcgal.py
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
def __init__(self, coords: Tuple = ()):
    """Initialize the MultiPoint with a tuple of coordinates.

    Parameters
    ----------
    coords : Tuple
        MultiPoint coordinates.
        If coords is empty, an empty MultiPoint is created.

    Returns
    -------
    MultiPoint
        A MultiPoint with coordinates coords

    """
    self._geom = MultiPoint.sfcgal_geom_from_coordinates(coords)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL MultiPoint starting from a tuple of coordinates.

Parameters:

Name Type Description Default
coordinates Tuple

MultiPoint coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL MultiPoint

Source code in pysfcgal/sfcgal.py
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
    """Instantiates a SFCGAL MultiPoint starting from a tuple of coordinates.

    Parameters
    ----------
    coordinates : Tuple
        MultiPoint coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL MultiPoint

    """
    multipoint = lib.sfcgal_multi_point_create()
    for coords in coordinates:
        point = Point.sfcgal_geom_from_coordinates(coords)
        lib.sfcgal_geometry_collection_add_geometry(multipoint, point)
    return multipoint

MultiPolygon

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
class MultiPolygon(GeometryCollectionBase):
    def __init__(self, coords: Tuple = ()):
        """Initialize the MultiPolygon with a tuple of coordinates.

        Parameters
        ----------
        coords : Tuple
            MultiPolygon coordinates.
            If coords is empty, an empty MultiPolygon is created.

        Returns
        -------
        MultiPolygon
            A MultiPolygon with coordinates coords

        """
        self._geom = MultiPolygon.sfcgal_geom_from_coordinates(coords)

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
        """Instantiates a SFCGAL MultiPolygon starting from a tuple of coordinates.

        Parameters
        ----------
        coordinates : Tuple
            MultiPolygon coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL MultiPolygon

        """
        multipolygon = lib.sfcgal_multi_polygon_create()
        if coordinates:
            for coords in coordinates:
                polygon = Polygon.sfcgal_geom_from_coordinates(coords)
                lib.sfcgal_geometry_collection_add_geometry(multipolygon, polygon)
        return multipolygon

__init__(coords=())

Initialize the MultiPolygon with a tuple of coordinates.

Parameters:

Name Type Description Default
coords Tuple

MultiPolygon coordinates. If coords is empty, an empty MultiPolygon is created.

()

Returns:

Type Description
MultiPolygon

A MultiPolygon with coordinates coords

Source code in pysfcgal/sfcgal.py
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
def __init__(self, coords: Tuple = ()):
    """Initialize the MultiPolygon with a tuple of coordinates.

    Parameters
    ----------
    coords : Tuple
        MultiPolygon coordinates.
        If coords is empty, an empty MultiPolygon is created.

    Returns
    -------
    MultiPolygon
        A MultiPolygon with coordinates coords

    """
    self._geom = MultiPolygon.sfcgal_geom_from_coordinates(coords)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL MultiPolygon starting from a tuple of coordinates.

Parameters:

Name Type Description Default
coordinates Tuple

MultiPolygon coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL MultiPolygon

Source code in pysfcgal/sfcgal.py
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
    """Instantiates a SFCGAL MultiPolygon starting from a tuple of coordinates.

    Parameters
    ----------
    coordinates : Tuple
        MultiPolygon coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL MultiPolygon

    """
    multipolygon = lib.sfcgal_multi_polygon_create()
    if coordinates:
        for coords in coordinates:
            polygon = Polygon.sfcgal_geom_from_coordinates(coords)
            lib.sfcgal_geometry_collection_add_geometry(multipolygon, polygon)
    return multipolygon

MultiSolid

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
class MultiSolid(GeometryCollectionBase):
    def __init__(self, coords: Tuple = ()):
        """Initialize the MultiSolid with the given coordinates.

        Parameters
        ----------
        coords : tuples, optional
            A tuple where each element is the coordinates of a solid
            If coords is empty, an empty MultiSolid is created.

        """
        self._geom = MultiSolid.sfcgal_geom_from_coordinates(coords)

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
        """Instantiates a SFCGAL MultiSolid starting from a tuple of coordinates.

        Parameters
        ----------
        coordinates : Tuple
            MultiSolid coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL MultiSolid

        """
        multisolid = lib.sfcgal_multi_solid_create()
        if coordinates:
            for coords in coordinates:
                solid = Solid.sfcgal_geom_from_coordinates(coords)
                lib.sfcgal_geometry_collection_add_geometry(multisolid, solid)
        return multisolid

__init__(coords=())

Initialize the MultiSolid with the given coordinates.

Parameters:

Name Type Description Default
coords tuples

A tuple where each element is the coordinates of a solid If coords is empty, an empty MultiSolid is created.

()
Source code in pysfcgal/sfcgal.py
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
def __init__(self, coords: Tuple = ()):
    """Initialize the MultiSolid with the given coordinates.

    Parameters
    ----------
    coords : tuples, optional
        A tuple where each element is the coordinates of a solid
        If coords is empty, an empty MultiSolid is created.

    """
    self._geom = MultiSolid.sfcgal_geom_from_coordinates(coords)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL MultiSolid starting from a tuple of coordinates.

Parameters:

Name Type Description Default
coordinates Tuple

MultiSolid coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL MultiSolid

Source code in pysfcgal/sfcgal.py
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: Tuple) -> ffi.CData:
    """Instantiates a SFCGAL MultiSolid starting from a tuple of coordinates.

    Parameters
    ----------
    coordinates : Tuple
        MultiSolid coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL MultiSolid

    """
    multisolid = lib.sfcgal_multi_solid_create()
    if coordinates:
        for coords in coordinates:
            solid = Solid.sfcgal_geom_from_coordinates(coords)
            lib.sfcgal_geometry_collection_add_geometry(multisolid, solid)
    return multisolid

Point

Bases: Geometry

Point

Attributes:

Name Type Description
_owned bool, default True

If True, the Python geometry owns the low-level SFCGAL geometry, which is removed when the Python structure is cleaned by the garbage collector.

_geom _CDatabase

SFCGAL point associated to the Point instance. The operations on the geometry are done at the SFCGAL lower level.

Source code in pysfcgal/sfcgal.py
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
class Point(Geometry):
    """Point

    Attributes
    ----------
    _owned : bool, default True
        If True, the Python geometry owns the low-level SFCGAL geometry, which is
        removed when the Python structure is cleaned by the garbage collector.
    _geom : _cffi_backend._CDatabase
        SFCGAL point associated to the Point instance. The operations on the geometry
        are done at the SFCGAL lower level.
    """

    Coord: TypeAlias = Optional[Union[int, float]]

    def __init__(self, x: Coord, y: Coord, z: Coord = None, m: Coord = None):
        self._geom = self.sfcgal_geom_from_coordinates([x, y, z, m])

    def __eq__(self, other: object) -> bool:
        """Two points are equals if their dimension and coordinates are equals
        (x, y, z and m).
        """
        if not isinstance(other, Point):
            return False
        are_point_equal = self.x == other.x and self.y == other.y
        if self.has_z and other.has_z:
            are_point_equal &= self.z == other.z
        elif self.has_z ^ other.has_z:
            return False
        if self.has_m and other.has_m:
            are_point_equal &= self.m == other.m
        elif self.has_m ^ other.has_m:
            return False
        return are_point_equal

    @property
    def x(self) -> Coord:
        """Get the x-coordinate of the point.

        Returns
        -------
        float
            The x-coordinate of the point.
        """
        return lib.sfcgal_point_x(self._geom)

    @property
    def y(self) -> Coord:
        """Get the y-coordinate of the point.

        Returns
        -------
        float
            The y-coordinate of the point.
        """
        return lib.sfcgal_point_y(self._geom)

    @property
    def z(self) -> Coord:
        """Get the z-coordinate of the point.

        Raises
        ------
        DimensionError
            If the point has no z coordinate.

        Returns
        -------
        float
            The z-coordinate of the point.
        """
        if lib.sfcgal_geometry_is_3d(self._geom):
            return lib.sfcgal_point_z(self._geom)
        else:
            raise DimensionError("This point has no z coordinate.")

    @property
    def m(self) -> Coord:
        """Get the m-coordinate of the point.

        Raises
        ------
        DimensionError
            If the point has no m coordinate.

        Returns
        -------
        float
            The m-coordinate of the point.
        """
        if lib.sfcgal_geometry_is_measured(self._geom):
            return lib.sfcgal_point_m(self._geom)
        else:
            raise DimensionError("This point has no m coordinate.")

    @cond_icontract(
        lambda self, radius, segments: (
            self.is_valid() and radius > 0 and segments > 3
        ),
        "require",
    )
    def buffer_3d(self, radius: float, segments: int) -> Optional[Geometry]:
        """
        Computes a 3D buffer around a Point

        Parameters
        ----------
        radius : float
            The buffer radius
        segments : int
            The number of segments to use for approximating curved surfaces

        Returns
        -------
        Geometry
            The buffered geometry

        """
        geom = lib.sfcgal_geometry_buffer3d(self._geom, radius, segments, 0)
        return Geometry.from_sfcgal_geometry(geom)

    def to_coordinates(self) -> Tuple[Coord, ...]:
        """Generates the coordinates of the Point.

        Returns
        -------
        tuple
            Two, three or four floating points depending on the point nature.
        """
        coords: Tuple[Point.Coord, ...] = (self.x, self.y)
        if self.has_m:
            coords += (self.z if self.has_z else None, self.m)
        elif self.has_z:
            coords = (*coords, self.z)
        return coords

    @classmethod
    def from_coordinates(cls, coordinates: list) -> Point:
        """Instantiates a Point starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            Point coordinates.

        Returns
        -------
        Point
            The Point that corresponds to the provided coordinates

        """
        return cls(*coordinates)

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
        """Instantiates a SFCGAL Point starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            Point coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Point

        """
        length_coordinates = len(coordinates)
        if length_coordinates < 2 or length_coordinates > 4:
            raise DimensionError("Coordinates length must be 2, 3 or 4.")

        if length_coordinates == 2:
            return lib.sfcgal_point_create_from_xy(*coordinates)
        elif length_coordinates == 3:
            return lib.sfcgal_point_create_from_xyz(*coordinates)
        elif length_coordinates == 4:
            has_z = coordinates[2] is not None
            has_m = coordinates[3] is not None
            if not has_z and not has_m:
                return lib.sfcgal_point_create_from_xy(coordinates[0], coordinates[1])
            elif has_z and not has_m:
                return lib.sfcgal_point_create_from_xyz(
                    coordinates[0], coordinates[1], coordinates[2]
                )
            elif not has_z and has_m:
                return lib.sfcgal_point_create_from_xym(
                    coordinates[0], coordinates[1], coordinates[3]
                )
            else:
                return lib.sfcgal_point_create_from_xyzm(*coordinates)

m: Coord property

Get the m-coordinate of the point.

Raises:

Type Description
DimensionError

If the point has no m coordinate.

Returns:

Type Description
float

The m-coordinate of the point.

x: Coord property

Get the x-coordinate of the point.

Returns:

Type Description
float

The x-coordinate of the point.

y: Coord property

Get the y-coordinate of the point.

Returns:

Type Description
float

The y-coordinate of the point.

z: Coord property

Get the z-coordinate of the point.

Raises:

Type Description
DimensionError

If the point has no z coordinate.

Returns:

Type Description
float

The z-coordinate of the point.

__eq__(other)

Two points are equals if their dimension and coordinates are equals (x, y, z and m).

Source code in pysfcgal/sfcgal.py
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
def __eq__(self, other: object) -> bool:
    """Two points are equals if their dimension and coordinates are equals
    (x, y, z and m).
    """
    if not isinstance(other, Point):
        return False
    are_point_equal = self.x == other.x and self.y == other.y
    if self.has_z and other.has_z:
        are_point_equal &= self.z == other.z
    elif self.has_z ^ other.has_z:
        return False
    if self.has_m and other.has_m:
        are_point_equal &= self.m == other.m
    elif self.has_m ^ other.has_m:
        return False
    return are_point_equal

buffer_3d(radius, segments)

Computes a 3D buffer around a Point

Parameters:

Name Type Description Default
radius float

The buffer radius

required
segments int

The number of segments to use for approximating curved surfaces

required

Returns:

Type Description
Geometry

The buffered geometry

Source code in pysfcgal/sfcgal.py
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
@cond_icontract(
    lambda self, radius, segments: (
        self.is_valid() and radius > 0 and segments > 3
    ),
    "require",
)
def buffer_3d(self, radius: float, segments: int) -> Optional[Geometry]:
    """
    Computes a 3D buffer around a Point

    Parameters
    ----------
    radius : float
        The buffer radius
    segments : int
        The number of segments to use for approximating curved surfaces

    Returns
    -------
    Geometry
        The buffered geometry

    """
    geom = lib.sfcgal_geometry_buffer3d(self._geom, radius, segments, 0)
    return Geometry.from_sfcgal_geometry(geom)

from_coordinates(coordinates) classmethod

Instantiates a Point starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

Point coordinates.

required

Returns:

Type Description
Point

The Point that corresponds to the provided coordinates

Source code in pysfcgal/sfcgal.py
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
@classmethod
def from_coordinates(cls, coordinates: list) -> Point:
    """Instantiates a Point starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        Point coordinates.

    Returns
    -------
    Point
        The Point that corresponds to the provided coordinates

    """
    return cls(*coordinates)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL Point starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

Point coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Point

Source code in pysfcgal/sfcgal.py
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
    """Instantiates a SFCGAL Point starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        Point coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Point

    """
    length_coordinates = len(coordinates)
    if length_coordinates < 2 or length_coordinates > 4:
        raise DimensionError("Coordinates length must be 2, 3 or 4.")

    if length_coordinates == 2:
        return lib.sfcgal_point_create_from_xy(*coordinates)
    elif length_coordinates == 3:
        return lib.sfcgal_point_create_from_xyz(*coordinates)
    elif length_coordinates == 4:
        has_z = coordinates[2] is not None
        has_m = coordinates[3] is not None
        if not has_z and not has_m:
            return lib.sfcgal_point_create_from_xy(coordinates[0], coordinates[1])
        elif has_z and not has_m:
            return lib.sfcgal_point_create_from_xyz(
                coordinates[0], coordinates[1], coordinates[2]
            )
        elif not has_z and has_m:
            return lib.sfcgal_point_create_from_xym(
                coordinates[0], coordinates[1], coordinates[3]
            )
        else:
            return lib.sfcgal_point_create_from_xyzm(*coordinates)

to_coordinates()

Generates the coordinates of the Point.

Returns:

Type Description
tuple

Two, three or four floating points depending on the point nature.

Source code in pysfcgal/sfcgal.py
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
def to_coordinates(self) -> Tuple[Coord, ...]:
    """Generates the coordinates of the Point.

    Returns
    -------
    tuple
        Two, three or four floating points depending on the point nature.
    """
    coords: Tuple[Point.Coord, ...] = (self.x, self.y)
    if self.has_m:
        coords += (self.z if self.has_z else None, self.m)
    elif self.has_z:
        coords = (*coords, self.z)
    return coords

Polygon

Bases: Geometry

Polygon

Attributes:

Name Type Description
_geom _CDatabase

SFCGAL polygon associated to the Polygon instance. The operations on the geometry are done at the SFCGAL lower level.

Source code in pysfcgal/sfcgal.py
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
class Polygon(Geometry):
    """Polygon

    Attributes
    ----------
    _geom : _cffi_backend._CDatabase
        SFCGAL polygon associated to the Polygon instance. The operations on the
        geometry are done at the SFCGAL lower level.
    """

    def __init__(self, exterior, interiors=None):
        """Initialize a Polygon with given exterior and optional interior rings.

        Parameters
        ----------
        exterior : list of tuples
            A list of coordinates defining the exterior ring of the polygon.
        interiors : list of list of tuples, optional
            A list of interior rings, where each interior is defined by a list of
            coordinates. Default is None, which initializes to an empty list.
        """
        if interiors is None:
            interiors = []
        self._geom = self.sfcgal_geom_from_coordinates(
            [
                exterior,
                *interiors,
            ]
        )

    def __iter__(self):
        """Iterate over the rings of the Polygon.

        Yields
        ------
        Geometry
            The exterior and interior rings of the Polygon.
        """
        for n in range(1 + self.n_interiors):
            yield self.__get_ring_n(n)

    def __getitem__(self, key):
        """Get a ring (or several) within a polygon, identified through an index or a
        slice. The first ring is always the exterior ring, the next ones are the
        interior rings (optional).

        Raises an IndexError if the key is unvalid for the geometry.

        Raises a TypeError if the key is neither an integer or a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the ring(s) to recover.

        Returns
        -------
        Geometry or list of Geometry
            The specified ring or a list of rings if a slice is provided.
        """
        length = 1 + self.n_interiors
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_ring_n(index)
        elif isinstance(key, slice):
            geoms = [self.__get_ring_n(index) for index in range(*key.indices(length))]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Two Polygons are equal if their rings (exterior and interior) are equal.

        Parameters
        ----------
        other : Polygon
            The Polygon to compare against.

        Returns
        -------
        bool
            True if the Polygons are equal, False otherwise.
        """
        if not isinstance(other, Polygon):
            return False
        if self.exterior != other.exterior:
            return False
        if self.n_interiors != other.n_interiors:
            return False
        for p, other_p in zip(self.interiors, other.interiors):
            if p != other_p:
                return False
        return True

    @property
    def exterior(self):
        """Get the exterior ring of the Polygon.

        Returns
        -------
        Geometry
            The exterior ring of the Polygon.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_polygon_exterior_ring(self._geom), owned=False
        )

    @property
    def n_interiors(self):
        """Get the number of interior rings in the Polygon.

        Returns
        -------
        int
            The number of interior rings.
        """
        return lib.sfcgal_polygon_num_interior_rings(self._geom)

    @property
    def interiors(self):
        """Get a list of the interior rings of the Polygon.

        Returns
        -------
        list of Geometry
            A list of interior rings.
        """
        interior_rings = []
        for idx in range(self.n_interiors):
            interior_rings.append(
                Geometry.from_sfcgal_geometry(
                    lib.sfcgal_polygon_interior_ring_n(self._geom, idx), owned=False
                )
            )
        return interior_rings

    @property
    def rings(self):
        """Get all the rings of the Polygon, including the exterior and interior rings.

        Returns
        -------
        list of Geometry
            A list containing the exterior ring followed by the interior rings.
        """
        return [self.exterior] + self.interiors

    def __get_ring_n(self, n):
        """Returns the n-th ring within a polygon. This method is internal and makes the
        assumption that the index is valid for the geometry. The 0 index refers to the
        exterior ring.

        Parameters
        ----------
        n : int
            Index of the ring to recover.

        Returns
        -------
        Geometry
            The ring at the specified index.
        """
        return self.rings[n]

    def has_exterior_edge(self, point_a: Point, point_b: Point) -> bool:
        """Check if the polygon has an edge defined by the two given points.

        This method verifies whether the line segment between point_a and point_b lies
        within the exterior ring of the polygon.

        Parameters
        ----------
        point_a : Point
            The first point defining the edge.
        point_b : Point
            The second point defining the edge.

        Returns
        -------
        bool
            True if the edge is part of the exterior ring, False otherwise.
        """
        poly_coordinates = self.to_coordinates()
        exterior_coordinates = poly_coordinates[0]
        return is_segment_in_coordsequence(exterior_coordinates, point_a, point_b)

    def to_coordinates(self) -> list:
        """Generates the coordinates of the Polygon.

        Returns
        -------
        list
            List of the polygon ring coordinates
        """
        return [ring.to_coordinates() for ring in self.rings]

    @classmethod
    def from_coordinates(cls, coordinates: list) -> Optional[Polygon]:
        """Instantiates a Polygon starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            Polygon coordinates. The first item corresponds to the coordinates of the
            exterior ring, whilst the following items are the coordinates of the
            interior rings, if they exist.

        Returns
        -------
        Polygon
            The Polygon that corresponds to the provided coordinates

        """
        return cls(coordinates[0], coordinates[1:] if len(coordinates) > 0 else None)

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
        """Instantiates a SFCGAL Polygon starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            Polygon coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Polygon

        """
        exterior = LineString.sfcgal_geom_from_coordinates(coordinates[0], True)
        polygon = lib.sfcgal_polygon_create_from_exterior_ring(exterior)
        for n in range(1, len(coordinates)):
            interior = LineString.sfcgal_geom_from_coordinates(coordinates[n], True)
            lib.sfcgal_polygon_add_interior_ring(polygon, interior)
        return polygon

exterior property

Get the exterior ring of the Polygon.

Returns:

Type Description
Geometry

The exterior ring of the Polygon.

interiors property

Get a list of the interior rings of the Polygon.

Returns:

Type Description
list of Geometry

A list of interior rings.

n_interiors property

Get the number of interior rings in the Polygon.

Returns:

Type Description
int

The number of interior rings.

rings property

Get all the rings of the Polygon, including the exterior and interior rings.

Returns:

Type Description
list of Geometry

A list containing the exterior ring followed by the interior rings.

__eq__(other)

Two Polygons are equal if their rings (exterior and interior) are equal.

Parameters:

Name Type Description Default
other Polygon

The Polygon to compare against.

required

Returns:

Type Description
bool

True if the Polygons are equal, False otherwise.

Source code in pysfcgal/sfcgal.py
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
def __eq__(self, other: object) -> bool:
    """Two Polygons are equal if their rings (exterior and interior) are equal.

    Parameters
    ----------
    other : Polygon
        The Polygon to compare against.

    Returns
    -------
    bool
        True if the Polygons are equal, False otherwise.
    """
    if not isinstance(other, Polygon):
        return False
    if self.exterior != other.exterior:
        return False
    if self.n_interiors != other.n_interiors:
        return False
    for p, other_p in zip(self.interiors, other.interiors):
        if p != other_p:
            return False
    return True

__get_ring_n(n)

Returns the n-th ring within a polygon. This method is internal and makes the assumption that the index is valid for the geometry. The 0 index refers to the exterior ring.

Parameters:

Name Type Description Default
n int

Index of the ring to recover.

required

Returns:

Type Description
Geometry

The ring at the specified index.

Source code in pysfcgal/sfcgal.py
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
def __get_ring_n(self, n):
    """Returns the n-th ring within a polygon. This method is internal and makes the
    assumption that the index is valid for the geometry. The 0 index refers to the
    exterior ring.

    Parameters
    ----------
    n : int
        Index of the ring to recover.

    Returns
    -------
    Geometry
        The ring at the specified index.
    """
    return self.rings[n]

__getitem__(key)

Get a ring (or several) within a polygon, identified through an index or a slice. The first ring is always the exterior ring, the next ones are the interior rings (optional).

Raises an IndexError if the key is unvalid for the geometry.

Raises a TypeError if the key is neither an integer or a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the ring(s) to recover.

required

Returns:

Type Description
Geometry or list of Geometry

The specified ring or a list of rings if a slice is provided.

Source code in pysfcgal/sfcgal.py
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
def __getitem__(self, key):
    """Get a ring (or several) within a polygon, identified through an index or a
    slice. The first ring is always the exterior ring, the next ones are the
    interior rings (optional).

    Raises an IndexError if the key is unvalid for the geometry.

    Raises a TypeError if the key is neither an integer or a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the ring(s) to recover.

    Returns
    -------
    Geometry or list of Geometry
        The specified ring or a list of rings if a slice is provided.
    """
    length = 1 + self.n_interiors
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_ring_n(index)
    elif isinstance(key, slice):
        geoms = [self.__get_ring_n(index) for index in range(*key.indices(length))]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(exterior, interiors=None)

Initialize a Polygon with given exterior and optional interior rings.

Parameters:

Name Type Description Default
exterior list of tuples

A list of coordinates defining the exterior ring of the polygon.

required
interiors list of list of tuples

A list of interior rings, where each interior is defined by a list of coordinates. Default is None, which initializes to an empty list.

None
Source code in pysfcgal/sfcgal.py
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
def __init__(self, exterior, interiors=None):
    """Initialize a Polygon with given exterior and optional interior rings.

    Parameters
    ----------
    exterior : list of tuples
        A list of coordinates defining the exterior ring of the polygon.
    interiors : list of list of tuples, optional
        A list of interior rings, where each interior is defined by a list of
        coordinates. Default is None, which initializes to an empty list.
    """
    if interiors is None:
        interiors = []
    self._geom = self.sfcgal_geom_from_coordinates(
        [
            exterior,
            *interiors,
        ]
    )

__iter__()

Iterate over the rings of the Polygon.

Yields:

Type Description
Geometry

The exterior and interior rings of the Polygon.

Source code in pysfcgal/sfcgal.py
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
def __iter__(self):
    """Iterate over the rings of the Polygon.

    Yields
    ------
    Geometry
        The exterior and interior rings of the Polygon.
    """
    for n in range(1 + self.n_interiors):
        yield self.__get_ring_n(n)

from_coordinates(coordinates) classmethod

Instantiates a Polygon starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

Polygon coordinates. The first item corresponds to the coordinates of the exterior ring, whilst the following items are the coordinates of the interior rings, if they exist.

required

Returns:

Type Description
Polygon

The Polygon that corresponds to the provided coordinates

Source code in pysfcgal/sfcgal.py
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
@classmethod
def from_coordinates(cls, coordinates: list) -> Optional[Polygon]:
    """Instantiates a Polygon starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        Polygon coordinates. The first item corresponds to the coordinates of the
        exterior ring, whilst the following items are the coordinates of the
        interior rings, if they exist.

    Returns
    -------
    Polygon
        The Polygon that corresponds to the provided coordinates

    """
    return cls(coordinates[0], coordinates[1:] if len(coordinates) > 0 else None)

has_exterior_edge(point_a, point_b)

Check if the polygon has an edge defined by the two given points.

This method verifies whether the line segment between point_a and point_b lies within the exterior ring of the polygon.

Parameters:

Name Type Description Default
point_a Point

The first point defining the edge.

required
point_b Point

The second point defining the edge.

required

Returns:

Type Description
bool

True if the edge is part of the exterior ring, False otherwise.

Source code in pysfcgal/sfcgal.py
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
def has_exterior_edge(self, point_a: Point, point_b: Point) -> bool:
    """Check if the polygon has an edge defined by the two given points.

    This method verifies whether the line segment between point_a and point_b lies
    within the exterior ring of the polygon.

    Parameters
    ----------
    point_a : Point
        The first point defining the edge.
    point_b : Point
        The second point defining the edge.

    Returns
    -------
    bool
        True if the edge is part of the exterior ring, False otherwise.
    """
    poly_coordinates = self.to_coordinates()
    exterior_coordinates = poly_coordinates[0]
    return is_segment_in_coordsequence(exterior_coordinates, point_a, point_b)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL Polygon starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

Polygon coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Polygon

Source code in pysfcgal/sfcgal.py
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
    """Instantiates a SFCGAL Polygon starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        Polygon coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Polygon

    """
    exterior = LineString.sfcgal_geom_from_coordinates(coordinates[0], True)
    polygon = lib.sfcgal_polygon_create_from_exterior_ring(exterior)
    for n in range(1, len(coordinates)):
        interior = LineString.sfcgal_geom_from_coordinates(coordinates[n], True)
        lib.sfcgal_polygon_add_interior_ring(polygon, interior)
    return polygon

to_coordinates()

Generates the coordinates of the Polygon.

Returns:

Type Description
list

List of the polygon ring coordinates

Source code in pysfcgal/sfcgal.py
2194
2195
2196
2197
2198
2199
2200
2201
2202
def to_coordinates(self) -> list:
    """Generates the coordinates of the Polygon.

    Returns
    -------
    list
        List of the polygon ring coordinates
    """
    return [ring.to_coordinates() for ring in self.rings]

PolyhedralSurface

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
class PolyhedralSurface(GeometryCollectionBase):
    def __init__(self, coords=None):
        """Initialize the PolyhedralSurface with the given coordinates.

        Parameters
        ----------
        coords : list of tuples, optional
            A list of coordinate tuples that define the polygons of the polyhedral
            surface. If None, initializes an empty polyhedral surface.
        """
        self._geom = PolyhedralSurface.sfcgal_geom_from_coordinates(coords)

    def __len__(self):
        """Get the number of polygons in the polyhedral surface.

        Returns
        -------
        int
            The number of polygons contained within the polyhedral surface.
        """
        return lib.sfcgal_polyhedral_surface_num_polygons(self._geom)

    def __iter__(self):
        """Iterate over the polygons of the polyhedral surface.

        Yields
        ------
        Geometry
            Each polygon of the polyhedral surface as a Geometry object.
        """
        for n in range(0, len(self)):
            yield Geometry.from_sfcgal_geometry(
                lib.sfcgal_polyhedral_surface_polygon_n(self._geom, n),
                owned=False,
            )

    def __get_geometry_n(self, n):
        """Returns the n-th polygon within the polyhedral surface.

        This method assumes that the index is valid for the geometry.

        Parameters
        ----------
        n : int
            Index of the polygon to recover.

        Returns
        -------
        Geometry
            The polygon at the specified index as a Geometry object.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_polyhedral_surface_polygon_n(self._geom, n),
            owned=False,
        )

    def __getitem__(self, key):
        """Get a polygon (or several) within the polyhedral surface, identified through
        an index or a slice.

        Raises an IndexError if the key is invalid for the geometry.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the polygon(s) to recover.

        Returns
        -------
        Geometry or list of Geometry
            The polygon(s) at the specified index or slice.
        """
        length = self.__len__()
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_geometry_n(index)
        elif isinstance(key, slice):
            geoms = [
                self.__get_geometry_n(index) for index in range(*key.indices(length))
            ]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Check if two polyhedral surfaces are equal based on their polygons.

        Parameters
        ----------
        other : PolyhedralSurface
            The other polyhedral surface to compare.

        Returns
        -------
        bool
            True if both polyhedral surfaces contain the same polygons, False otherwise.
        """
        if not isinstance(other, PolyhedralSurface):
            return False
        return self[:] == other[:]

    @cond_icontract(lambda self: self.is_valid(), "require")
    def to_solid(self) -> Solid:
        """Convert the polyhedralsurface into a solid.

        Returns
        -------
        Solid
            A solid version of the polyhedralsurface.
        """
        geom = lib.sfcgal_geometry_make_solid(self._geom)
        return cast(Solid, PolyhedralSurface.from_sfcgal_geometry(geom))

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
        """Instantiates a SFCGAL PolyhedralSurface starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            PolyhedralSurface coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL PolyhedralSurface

        """
        polyhedralsurface = lib.sfcgal_polyhedral_surface_create()
        for coords in coordinates:
            polygon = Polygon.sfcgal_geom_from_coordinates(coords)
            lib.sfcgal_polyhedral_surface_add_polygon(polyhedralsurface, polygon)
        return polyhedralsurface

__eq__(other)

Check if two polyhedral surfaces are equal based on their polygons.

Parameters:

Name Type Description Default
other PolyhedralSurface

The other polyhedral surface to compare.

required

Returns:

Type Description
bool

True if both polyhedral surfaces contain the same polygons, False otherwise.

Source code in pysfcgal/sfcgal.py
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
def __eq__(self, other: object) -> bool:
    """Check if two polyhedral surfaces are equal based on their polygons.

    Parameters
    ----------
    other : PolyhedralSurface
        The other polyhedral surface to compare.

    Returns
    -------
    bool
        True if both polyhedral surfaces contain the same polygons, False otherwise.
    """
    if not isinstance(other, PolyhedralSurface):
        return False
    return self[:] == other[:]

__get_geometry_n(n)

Returns the n-th polygon within the polyhedral surface.

This method assumes that the index is valid for the geometry.

Parameters:

Name Type Description Default
n int

Index of the polygon to recover.

required

Returns:

Type Description
Geometry

The polygon at the specified index as a Geometry object.

Source code in pysfcgal/sfcgal.py
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
def __get_geometry_n(self, n):
    """Returns the n-th polygon within the polyhedral surface.

    This method assumes that the index is valid for the geometry.

    Parameters
    ----------
    n : int
        Index of the polygon to recover.

    Returns
    -------
    Geometry
        The polygon at the specified index as a Geometry object.
    """
    return Geometry.from_sfcgal_geometry(
        lib.sfcgal_polyhedral_surface_polygon_n(self._geom, n),
        owned=False,
    )

__getitem__(key)

Get a polygon (or several) within the polyhedral surface, identified through an index or a slice.

Raises an IndexError if the key is invalid for the geometry.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the polygon(s) to recover.

required

Returns:

Type Description
Geometry or list of Geometry

The polygon(s) at the specified index or slice.

Source code in pysfcgal/sfcgal.py
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
def __getitem__(self, key):
    """Get a polygon (or several) within the polyhedral surface, identified through
    an index or a slice.

    Raises an IndexError if the key is invalid for the geometry.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the polygon(s) to recover.

    Returns
    -------
    Geometry or list of Geometry
        The polygon(s) at the specified index or slice.
    """
    length = self.__len__()
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_geometry_n(index)
    elif isinstance(key, slice):
        geoms = [
            self.__get_geometry_n(index) for index in range(*key.indices(length))
        ]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(coords=None)

Initialize the PolyhedralSurface with the given coordinates.

Parameters:

Name Type Description Default
coords list of tuples

A list of coordinate tuples that define the polygons of the polyhedral surface. If None, initializes an empty polyhedral surface.

None
Source code in pysfcgal/sfcgal.py
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
def __init__(self, coords=None):
    """Initialize the PolyhedralSurface with the given coordinates.

    Parameters
    ----------
    coords : list of tuples, optional
        A list of coordinate tuples that define the polygons of the polyhedral
        surface. If None, initializes an empty polyhedral surface.
    """
    self._geom = PolyhedralSurface.sfcgal_geom_from_coordinates(coords)

__iter__()

Iterate over the polygons of the polyhedral surface.

Yields:

Type Description
Geometry

Each polygon of the polyhedral surface as a Geometry object.

Source code in pysfcgal/sfcgal.py
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
def __iter__(self):
    """Iterate over the polygons of the polyhedral surface.

    Yields
    ------
    Geometry
        Each polygon of the polyhedral surface as a Geometry object.
    """
    for n in range(0, len(self)):
        yield Geometry.from_sfcgal_geometry(
            lib.sfcgal_polyhedral_surface_polygon_n(self._geom, n),
            owned=False,
        )

__len__()

Get the number of polygons in the polyhedral surface.

Returns:

Type Description
int

The number of polygons contained within the polyhedral surface.

Source code in pysfcgal/sfcgal.py
2890
2891
2892
2893
2894
2895
2896
2897
2898
def __len__(self):
    """Get the number of polygons in the polyhedral surface.

    Returns
    -------
    int
        The number of polygons contained within the polyhedral surface.
    """
    return lib.sfcgal_polyhedral_surface_num_polygons(self._geom)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL PolyhedralSurface starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

PolyhedralSurface coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL PolyhedralSurface

Source code in pysfcgal/sfcgal.py
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
    """Instantiates a SFCGAL PolyhedralSurface starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        PolyhedralSurface coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL PolyhedralSurface

    """
    polyhedralsurface = lib.sfcgal_polyhedral_surface_create()
    for coords in coordinates:
        polygon = Polygon.sfcgal_geom_from_coordinates(coords)
        lib.sfcgal_polyhedral_surface_add_polygon(polyhedralsurface, polygon)
    return polyhedralsurface

to_solid()

Convert the polyhedralsurface into a solid.

Returns:

Type Description
Solid

A solid version of the polyhedralsurface.

Source code in pysfcgal/sfcgal.py
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
@cond_icontract(lambda self: self.is_valid(), "require")
def to_solid(self) -> Solid:
    """Convert the polyhedralsurface into a solid.

    Returns
    -------
    Solid
        A solid version of the polyhedralsurface.
    """
    geom = lib.sfcgal_geometry_make_solid(self._geom)
    return cast(Solid, PolyhedralSurface.from_sfcgal_geometry(geom))

Solid

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
class Solid(GeometryCollectionBase):
    def __init__(self, coords: Tuple = ()):
        """Initialize the Solid with the given coordinates.

        Parameters
        ----------
        coords : list of list of tuples, optional
            A tuple where the first element is the exterior shell coordinates, and the
            subsequent elements are the interior shell coordinates.
            If coords is empty, an empty Solid is created.

        """
        self._geom = Solid.sfcgal_geom_from_coordinates(coords)

    def __iter__(self):
        """Iterate over the shells of the solid.

        Yields
        ------
        Geometry
            Each shell of the solid as a Geometry object.
        """
        for n in range(self.n_shells):
            yield self.__get_shell_n(n)

    def __getitem__(self, key):
        """Get a shell (or several) within a solid, identified through an index or a
        slice. The first shell is always the exterior shell, the next ones are the
        interior shells (optional).

        Raises an IndexError if the key is invalid for the geometry.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the shell(s) to recover.

        Returns
        -------
        PolyhedralSurface or list of PolyhedralSurface
            The shell(s) at the specified index or slice.
        """
        length = self.n_shells
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_shell_n(index)
        elif isinstance(key, slice):
            geoms = [self.__get_shell_n(index) for index in range(*key.indices(length))]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Two Solids are equal if their shells (exterior and interior) are equal.

        Parameters
        ----------
        other : Solid
            The other solid to compare.

        Returns
        -------
        bool
            True if both solids contain the same shells, False otherwise.
        """
        if not isinstance(other, Solid):
            return False
        if self.n_shells != other.n_shells:
            return False
        return all(phs == other_phs for phs, other_phs in zip(self, other))

    @property
    def n_shells(self):
        """Get the number of shells in the solid.

        Returns
        -------
        int
            The number of shells contained within the solid.
        """
        return lib.sfcgal_solid_num_shells(self._geom)

    @property
    def shells(self):
        """Get the shells of the solid.

        Returns
        -------
        list of Geometry
            A list of shells as Geometry objects.
        """
        _shells = []
        for idx in range(self.n_shells):
            _shells.append(
                Geometry.from_sfcgal_geometry(
                    lib.sfcgal_solid_shell_n(self._geom, idx), owned=False
                )
            )
        return _shells

    def __get_shell_n(self, n):
        """Returns the n-th shell within the solid. This method is internal and makes
        the assumption that the index is valid for the geometry. The 0 index refers to
        the exterior shell.

        Parameters
        ----------
        n : int
            Index of the shell to recover.

        Returns
        -------
        PolyhedralSurface
            The shell at the specified index.
        """
        return self.shells[n]

    def to_polyhedralsurface(
            self, wrapped: bool = True) -> Union[PolyhedralSurface, ffi.CData]:
        """Convert the solid to a PolyhedralSurface.

        Parameters
        ----------
        wrapped : bool, optional
            If True, wrap the returned geometry in a Geometry object. Defaults to True.

        Returns
        -------
        PolyhedralSurface
            The corresponding PolyhedralSurface representation of the solid.
        """
        phs_geom = lib.sfcgal_polyhedral_surface_create()

        for shell in self.shells:
            num_geoms = lib.sfcgal_polyhedral_surface_num_polygons(shell._geom)
            for geom_idx in range(num_geoms):
                polygon = lib.sfcgal_polyhedral_surface_polygon_n(shell._geom, geom_idx)
                lib.sfcgal_polyhedral_surface_add_polygon(
                    phs_geom, lib.sfcgal_geometry_clone(polygon)
                )
        return Geometry.from_sfcgal_geometry(phs_geom) if wrapped else phs_geom

    @staticmethod
    def sfcgal_geom_from_coordinates(
            coordinates: Tuple, close: bool = False) -> ffi.CData:
        """Instantiates a SFCGAL Solid starting from a tuple of coordinates.

        Parameters
        ----------
        coordinates : Tuple
            A tuple of coordinate tuples representing the solid's shells.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Solid.
        """
        solid = lib.sfcgal_solid_create()
        if coordinates:
            polyhedralsurface = PolyhedralSurface.sfcgal_geom_from_coordinates(
                coordinates[0]
            )
            solid = lib.sfcgal_solid_create_from_exterior_shell(polyhedralsurface)
            for coords in coordinates[1:]:
                polyhedralsurface = PolyhedralSurface.sfcgal_geom_from_coordinates(
                    coords
                )
                lib.sfcgal_solid_add_interior_shell(solid, polyhedralsurface)
        return solid

n_shells property

Get the number of shells in the solid.

Returns:

Type Description
int

The number of shells contained within the solid.

shells property

Get the shells of the solid.

Returns:

Type Description
list of Geometry

A list of shells as Geometry objects.

__eq__(other)

Two Solids are equal if their shells (exterior and interior) are equal.

Parameters:

Name Type Description Default
other Solid

The other solid to compare.

required

Returns:

Type Description
bool

True if both solids contain the same shells, False otherwise.

Source code in pysfcgal/sfcgal.py
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
def __eq__(self, other: object) -> bool:
    """Two Solids are equal if their shells (exterior and interior) are equal.

    Parameters
    ----------
    other : Solid
        The other solid to compare.

    Returns
    -------
    bool
        True if both solids contain the same shells, False otherwise.
    """
    if not isinstance(other, Solid):
        return False
    if self.n_shells != other.n_shells:
        return False
    return all(phs == other_phs for phs, other_phs in zip(self, other))

__get_shell_n(n)

Returns the n-th shell within the solid. This method is internal and makes the assumption that the index is valid for the geometry. The 0 index refers to the exterior shell.

Parameters:

Name Type Description Default
n int

Index of the shell to recover.

required

Returns:

Type Description
PolyhedralSurface

The shell at the specified index.

Source code in pysfcgal/sfcgal.py
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
def __get_shell_n(self, n):
    """Returns the n-th shell within the solid. This method is internal and makes
    the assumption that the index is valid for the geometry. The 0 index refers to
    the exterior shell.

    Parameters
    ----------
    n : int
        Index of the shell to recover.

    Returns
    -------
    PolyhedralSurface
        The shell at the specified index.
    """
    return self.shells[n]

__getitem__(key)

Get a shell (or several) within a solid, identified through an index or a slice. The first shell is always the exterior shell, the next ones are the interior shells (optional).

Raises an IndexError if the key is invalid for the geometry.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the shell(s) to recover.

required

Returns:

Type Description
PolyhedralSurface or list of PolyhedralSurface

The shell(s) at the specified index or slice.

Source code in pysfcgal/sfcgal.py
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
def __getitem__(self, key):
    """Get a shell (or several) within a solid, identified through an index or a
    slice. The first shell is always the exterior shell, the next ones are the
    interior shells (optional).

    Raises an IndexError if the key is invalid for the geometry.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the shell(s) to recover.

    Returns
    -------
    PolyhedralSurface or list of PolyhedralSurface
        The shell(s) at the specified index or slice.
    """
    length = self.n_shells
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_shell_n(index)
    elif isinstance(key, slice):
        geoms = [self.__get_shell_n(index) for index in range(*key.indices(length))]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(coords=())

Initialize the Solid with the given coordinates.

Parameters:

Name Type Description Default
coords list of list of tuples

A tuple where the first element is the exterior shell coordinates, and the subsequent elements are the interior shell coordinates. If coords is empty, an empty Solid is created.

()
Source code in pysfcgal/sfcgal.py
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
def __init__(self, coords: Tuple = ()):
    """Initialize the Solid with the given coordinates.

    Parameters
    ----------
    coords : list of list of tuples, optional
        A tuple where the first element is the exterior shell coordinates, and the
        subsequent elements are the interior shell coordinates.
        If coords is empty, an empty Solid is created.

    """
    self._geom = Solid.sfcgal_geom_from_coordinates(coords)

__iter__()

Iterate over the shells of the solid.

Yields:

Type Description
Geometry

Each shell of the solid as a Geometry object.

Source code in pysfcgal/sfcgal.py
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
def __iter__(self):
    """Iterate over the shells of the solid.

    Yields
    ------
    Geometry
        Each shell of the solid as a Geometry object.
    """
    for n in range(self.n_shells):
        yield self.__get_shell_n(n)

sfcgal_geom_from_coordinates(coordinates, close=False) staticmethod

Instantiates a SFCGAL Solid starting from a tuple of coordinates.

Parameters:

Name Type Description Default
coordinates Tuple

A tuple of coordinate tuples representing the solid's shells.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Solid.

Source code in pysfcgal/sfcgal.py
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
@staticmethod
def sfcgal_geom_from_coordinates(
        coordinates: Tuple, close: bool = False) -> ffi.CData:
    """Instantiates a SFCGAL Solid starting from a tuple of coordinates.

    Parameters
    ----------
    coordinates : Tuple
        A tuple of coordinate tuples representing the solid's shells.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Solid.
    """
    solid = lib.sfcgal_solid_create()
    if coordinates:
        polyhedralsurface = PolyhedralSurface.sfcgal_geom_from_coordinates(
            coordinates[0]
        )
        solid = lib.sfcgal_solid_create_from_exterior_shell(polyhedralsurface)
        for coords in coordinates[1:]:
            polyhedralsurface = PolyhedralSurface.sfcgal_geom_from_coordinates(
                coords
            )
            lib.sfcgal_solid_add_interior_shell(solid, polyhedralsurface)
    return solid

to_polyhedralsurface(wrapped=True)

Convert the solid to a PolyhedralSurface.

Parameters:

Name Type Description Default
wrapped bool

If True, wrap the returned geometry in a Geometry object. Defaults to True.

True

Returns:

Type Description
PolyhedralSurface

The corresponding PolyhedralSurface representation of the solid.

Source code in pysfcgal/sfcgal.py
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
def to_polyhedralsurface(
        self, wrapped: bool = True) -> Union[PolyhedralSurface, ffi.CData]:
    """Convert the solid to a PolyhedralSurface.

    Parameters
    ----------
    wrapped : bool, optional
        If True, wrap the returned geometry in a Geometry object. Defaults to True.

    Returns
    -------
    PolyhedralSurface
        The corresponding PolyhedralSurface representation of the solid.
    """
    phs_geom = lib.sfcgal_polyhedral_surface_create()

    for shell in self.shells:
        num_geoms = lib.sfcgal_polyhedral_surface_num_polygons(shell._geom)
        for geom_idx in range(num_geoms):
            polygon = lib.sfcgal_polyhedral_surface_polygon_n(shell._geom, geom_idx)
            lib.sfcgal_polyhedral_surface_add_polygon(
                phs_geom, lib.sfcgal_geometry_clone(polygon)
            )
    return Geometry.from_sfcgal_geometry(phs_geom) if wrapped else phs_geom

Tin

Bases: GeometryCollectionBase

Source code in pysfcgal/sfcgal.py
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
class Tin(GeometryCollectionBase):
    def __init__(self, coords=None):
        """Initialize the Tin with the given coordinates.

        Parameters
        ----------
        coords : list of tuples, optional
            A list of coordinate tuples that define the vertices of the TIN.
            If None, initializes an empty TIN.
        """
        self._geom = Tin.sfcgal_geom_from_coordinates(coords)

    def __len__(self):
        """Return the number of triangles in the TIN.

        Returns
        -------
        int
            The number of triangles that comprise the TIN.
        """
        return lib.sfcgal_triangulated_surface_num_triangles(self._geom)

    def __iter__(self):
        """Iterate over the triangles in the TIN.

        Yields
        ------
        Geometry
            Each triangle in the TIN as a Geometry object.
        """
        for n in range(0, len(self)):
            yield Geometry.from_sfcgal_geometry(
                lib.sfcgal_triangulated_surface_triangle_n(self._geom, n),
                owned=False,
            )

    def __get_geometry_n(self, n):
        """Returns the n-th triangle within the TIN.

        This method assumes that the index is valid for the TIN.

        Parameters
        ----------
        n : int
            Index of the triangle to recover.

        Returns
        -------
        Geometry
            The triangle at the specified index as a Geometry object.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_triangulated_surface_triangle_n(self._geom, n),
            owned=False,
        )

    def __getitem__(self, key):
        """Get a triangle (or several) within the TIN, identified through an index or a
        slice.

        Raises an IndexError if the key is invalid for the TIN.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the triangle(s) to recover.

        Returns
        -------
        Geometry or list of Geometry
            The triangle(s) at the specified index or slice.
        """
        length = self.__len__()
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_geometry_n(index)
        elif isinstance(key, slice):
            geoms = [
                self.__get_geometry_n(index) for index in range(*key.indices(length))
            ]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Check if two TINs are equal based on their triangles.

        Parameters
        ----------
        other : Tin
            The other TIN to compare.

        Returns
        -------
        bool
            True if both TINs contain the same triangles, False otherwise.
        """
        if not isinstance(other, Tin):
            return False
        return self[:] == other[:]

    def to_multipolygon(self, wrapped: bool = False) -> Union[MultiPolygon, ffi.CData]:
        """Convert the TIN to a MultiPolygon.

        Parameters
        ----------
        wrapped : bool, optional
            If True, wrap the result in a Geometry object. Defaults to False.

        Returns
        -------
        MultiPolygon
            A MultiPolygon representation of the TIN.
        """
        multipolygon = lib.sfcgal_multi_polygon_create()
        num_geoms = lib.sfcgal_triangulated_surface_num_triangles(self._geom)
        for geom_idx in range(num_geoms):
            triangle_geom = lib.sfcgal_triangulated_surface_triangle_n(
                self._geom, geom_idx
            )
            triangle_clone = lib.sfcgal_geometry_clone(triangle_geom)
            triangle_clone_wrap = cast(
                Triangle, Geometry.from_sfcgal_geometry(triangle_clone))
            polygon = triangle_clone_wrap.to_polygon(wrapped=False)
            lib.sfcgal_geometry_collection_add_geometry(multipolygon, polygon)
        return Geometry.from_sfcgal_geometry(multipolygon) if wrapped else multipolygon

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
        """Instantiates a SFCGAL Tin starting from a list of coordinates.

        Parameters
        ----------
        coordinates : list
            Tin coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Tin

        """
        tin = lib.sfcgal_triangulated_surface_create()
        for coords in coordinates:
            triangle = Triangle.sfcgal_geom_from_coordinates(coords)
            lib.sfcgal_triangulated_surface_add_triangle(tin, triangle)
        return tin

__eq__(other)

Check if two TINs are equal based on their triangles.

Parameters:

Name Type Description Default
other Tin

The other TIN to compare.

required

Returns:

Type Description
bool

True if both TINs contain the same triangles, False otherwise.

Source code in pysfcgal/sfcgal.py
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
def __eq__(self, other: object) -> bool:
    """Check if two TINs are equal based on their triangles.

    Parameters
    ----------
    other : Tin
        The other TIN to compare.

    Returns
    -------
    bool
        True if both TINs contain the same triangles, False otherwise.
    """
    if not isinstance(other, Tin):
        return False
    return self[:] == other[:]

__get_geometry_n(n)

Returns the n-th triangle within the TIN.

This method assumes that the index is valid for the TIN.

Parameters:

Name Type Description Default
n int

Index of the triangle to recover.

required

Returns:

Type Description
Geometry

The triangle at the specified index as a Geometry object.

Source code in pysfcgal/sfcgal.py
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
def __get_geometry_n(self, n):
    """Returns the n-th triangle within the TIN.

    This method assumes that the index is valid for the TIN.

    Parameters
    ----------
    n : int
        Index of the triangle to recover.

    Returns
    -------
    Geometry
        The triangle at the specified index as a Geometry object.
    """
    return Geometry.from_sfcgal_geometry(
        lib.sfcgal_triangulated_surface_triangle_n(self._geom, n),
        owned=False,
    )

__getitem__(key)

Get a triangle (or several) within the TIN, identified through an index or a slice.

Raises an IndexError if the key is invalid for the TIN.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the triangle(s) to recover.

required

Returns:

Type Description
Geometry or list of Geometry

The triangle(s) at the specified index or slice.

Source code in pysfcgal/sfcgal.py
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
def __getitem__(self, key):
    """Get a triangle (or several) within the TIN, identified through an index or a
    slice.

    Raises an IndexError if the key is invalid for the TIN.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the triangle(s) to recover.

    Returns
    -------
    Geometry or list of Geometry
        The triangle(s) at the specified index or slice.
    """
    length = self.__len__()
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_geometry_n(index)
    elif isinstance(key, slice):
        geoms = [
            self.__get_geometry_n(index) for index in range(*key.indices(length))
        ]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(coords=None)

Initialize the Tin with the given coordinates.

Parameters:

Name Type Description Default
coords list of tuples

A list of coordinate tuples that define the vertices of the TIN. If None, initializes an empty TIN.

None
Source code in pysfcgal/sfcgal.py
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
def __init__(self, coords=None):
    """Initialize the Tin with the given coordinates.

    Parameters
    ----------
    coords : list of tuples, optional
        A list of coordinate tuples that define the vertices of the TIN.
        If None, initializes an empty TIN.
    """
    self._geom = Tin.sfcgal_geom_from_coordinates(coords)

__iter__()

Iterate over the triangles in the TIN.

Yields:

Type Description
Geometry

Each triangle in the TIN as a Geometry object.

Source code in pysfcgal/sfcgal.py
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
def __iter__(self):
    """Iterate over the triangles in the TIN.

    Yields
    ------
    Geometry
        Each triangle in the TIN as a Geometry object.
    """
    for n in range(0, len(self)):
        yield Geometry.from_sfcgal_geometry(
            lib.sfcgal_triangulated_surface_triangle_n(self._geom, n),
            owned=False,
        )

__len__()

Return the number of triangles in the TIN.

Returns:

Type Description
int

The number of triangles that comprise the TIN.

Source code in pysfcgal/sfcgal.py
2554
2555
2556
2557
2558
2559
2560
2561
2562
def __len__(self):
    """Return the number of triangles in the TIN.

    Returns
    -------
    int
        The number of triangles that comprise the TIN.
    """
    return lib.sfcgal_triangulated_surface_num_triangles(self._geom)

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL Tin starting from a list of coordinates.

Parameters:

Name Type Description Default
coordinates list

Tin coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Tin

Source code in pysfcgal/sfcgal.py
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
    """Instantiates a SFCGAL Tin starting from a list of coordinates.

    Parameters
    ----------
    coordinates : list
        Tin coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Tin

    """
    tin = lib.sfcgal_triangulated_surface_create()
    for coords in coordinates:
        triangle = Triangle.sfcgal_geom_from_coordinates(coords)
        lib.sfcgal_triangulated_surface_add_triangle(tin, triangle)
    return tin

to_multipolygon(wrapped=False)

Convert the TIN to a MultiPolygon.

Parameters:

Name Type Description Default
wrapped bool

If True, wrap the result in a Geometry object. Defaults to False.

False

Returns:

Type Description
MultiPolygon

A MultiPolygon representation of the TIN.

Source code in pysfcgal/sfcgal.py
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
def to_multipolygon(self, wrapped: bool = False) -> Union[MultiPolygon, ffi.CData]:
    """Convert the TIN to a MultiPolygon.

    Parameters
    ----------
    wrapped : bool, optional
        If True, wrap the result in a Geometry object. Defaults to False.

    Returns
    -------
    MultiPolygon
        A MultiPolygon representation of the TIN.
    """
    multipolygon = lib.sfcgal_multi_polygon_create()
    num_geoms = lib.sfcgal_triangulated_surface_num_triangles(self._geom)
    for geom_idx in range(num_geoms):
        triangle_geom = lib.sfcgal_triangulated_surface_triangle_n(
            self._geom, geom_idx
        )
        triangle_clone = lib.sfcgal_geometry_clone(triangle_geom)
        triangle_clone_wrap = cast(
            Triangle, Geometry.from_sfcgal_geometry(triangle_clone))
        polygon = triangle_clone_wrap.to_polygon(wrapped=False)
        lib.sfcgal_geometry_collection_add_geometry(multipolygon, polygon)
    return Geometry.from_sfcgal_geometry(multipolygon) if wrapped else multipolygon

Triangle

Bases: Geometry

Source code in pysfcgal/sfcgal.py
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
class Triangle(Geometry):
    def __init__(self, coords=None):
        """Initialize the Triangle with the given coordinates.

        Parameters
        ----------
        coords : list of tuples, optional
            A list of coordinate tuples that define the vertices of the triangle.
            If None, initializes an empty triangle.
        """
        self._geom = Triangle.sfcgal_geom_from_coordinates(coords)

    @property
    def coords(self):
        """Get the coordinates of the triangle.

        Returns
        -------
        list of tuples
            The coordinates of the triangle's vertices.
        """
        return self.to_coordinates()

    def __iter__(self):
        """Iterate over the vertices of the triangle.

        Yields
        ------
        Geometry
            Each vertex of the triangle as a Geometry object.
        """
        for n in range(3):
            yield Geometry.from_sfcgal_geometry(
                lib.sfcgal_triangle_vertex(self._geom, n),
                owned=False,
            )

    def __get_geometry_n(self, n):
        """Returns the n-th vertex of the triangle.

        This method assumes that the index is valid for the triangle.

        Parameters
        ----------
        n : int
            Index of the vertex to recover.

        Returns
        -------
        Geometry
            The vertex at the specified index as a Geometry object.
        """
        return Geometry.from_sfcgal_geometry(
            lib.sfcgal_triangle_vertex(self._geom, n),
            owned=False,
        )

    def __getitem__(self, key):
        """Get a vertex (or several) within the triangle, identified through an index
        or a slice.

        Raises an IndexError if the key is invalid for the triangle.

        Raises a TypeError if the key is neither an integer nor a valid slice.

        Parameters
        ----------
        key : int or slice
            Index (or slice) of the vertex(es) to recover.

        Returns
        -------
        Geometry or list of Geometry
            The vertex(es) at the specified index or slice.
        """
        length = 3
        if isinstance(key, int):
            if key + length < 0 or key >= length:
                raise IndexError("geometry sequence index out of range")
            elif key < 0:
                index = length + key
            else:
                index = key
            return self.__get_geometry_n(index)
        elif isinstance(key, slice):
            geoms = [
                self.__get_geometry_n(index) for index in range(*key.indices(length))
            ]
            return geoms
        else:
            raise TypeError(
                "geometry sequence indices must be\
                            integers or slices, not {}".format(
                    key.__class__.__name__
                )
            )

    def __eq__(self, other: object) -> bool:
        """Check if two triangles are equal based on their vertices.

        Parameters
        ----------
        other : Triangle
            The other triangle to compare.

        Returns
        -------
        bool
            True if both triangles contain the same vertices, False otherwise.
        """
        if not isinstance(other, Triangle):
            return False
        return all(vertex == other_vertex for vertex, other_vertex in zip(self, other))

    def to_polygon(self, wrapped: bool = True) -> Union[Polygon, ffi.CData]:
        """Convert the triangle to a Polygon.

        Parameters
        ----------
        wrapped : bool, optional
            If True, wrap the result in a Geometry object. Defaults to True.

        Returns
        -------
        Polygon
            A Polygon representation of the triangle.
        """
        exterior = lib.sfcgal_linestring_create()
        for point_idx in range(4):
            point = lib.sfcgal_triangle_vertex(self._geom, point_idx)
            lib.sfcgal_linestring_add_point(exterior, lib.sfcgal_geometry_clone(point))
        polygon = lib.sfcgal_polygon_create_from_exterior_ring(exterior)
        return Geometry.from_sfcgal_geometry(polygon) if wrapped else polygon

    def to_coordinates(self):
        """Generates the coordinates of the Triangle.

        Uses the __iter__ property of the Triangle to iterate over vertices.

        Returns
        -------
        list
            List of the vertex coordinates
        """
        return [vertex.to_coordinates() for vertex in self]

    @staticmethod
    def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
        """Instantiates a SFCGAL Triangle starting from a list of coordinates.

        If the coordinates does not contain three items, an empty Triangle is returned

        Parameters
        ----------
        coordinates : list
            Triangle coordinates.

        Returns
        -------
        _cffi_backend._CDatabase
            A pointer towards a SFCGAL Triangle
        """
        triangle = None
        if coordinates and len(coordinates) == 3:
            triangle = lib.sfcgal_triangle_create_from_points(
                Point.sfcgal_geom_from_coordinates(coordinates[0]),
                Point.sfcgal_geom_from_coordinates(coordinates[1]),
                Point.sfcgal_geom_from_coordinates(coordinates[2]),
            )
        else:
            triangle = lib.sfcgal_triangle_create()

        return triangle

coords property

Get the coordinates of the triangle.

Returns:

Type Description
list of tuples

The coordinates of the triangle's vertices.

__eq__(other)

Check if two triangles are equal based on their vertices.

Parameters:

Name Type Description Default
other Triangle

The other triangle to compare.

required

Returns:

Type Description
bool

True if both triangles contain the same vertices, False otherwise.

Source code in pysfcgal/sfcgal.py
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
def __eq__(self, other: object) -> bool:
    """Check if two triangles are equal based on their vertices.

    Parameters
    ----------
    other : Triangle
        The other triangle to compare.

    Returns
    -------
    bool
        True if both triangles contain the same vertices, False otherwise.
    """
    if not isinstance(other, Triangle):
        return False
    return all(vertex == other_vertex for vertex, other_vertex in zip(self, other))

__get_geometry_n(n)

Returns the n-th vertex of the triangle.

This method assumes that the index is valid for the triangle.

Parameters:

Name Type Description Default
n int

Index of the vertex to recover.

required

Returns:

Type Description
Geometry

The vertex at the specified index as a Geometry object.

Source code in pysfcgal/sfcgal.py
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
def __get_geometry_n(self, n):
    """Returns the n-th vertex of the triangle.

    This method assumes that the index is valid for the triangle.

    Parameters
    ----------
    n : int
        Index of the vertex to recover.

    Returns
    -------
    Geometry
        The vertex at the specified index as a Geometry object.
    """
    return Geometry.from_sfcgal_geometry(
        lib.sfcgal_triangle_vertex(self._geom, n),
        owned=False,
    )

__getitem__(key)

Get a vertex (or several) within the triangle, identified through an index or a slice.

Raises an IndexError if the key is invalid for the triangle.

Raises a TypeError if the key is neither an integer nor a valid slice.

Parameters:

Name Type Description Default
key int or slice

Index (or slice) of the vertex(es) to recover.

required

Returns:

Type Description
Geometry or list of Geometry

The vertex(es) at the specified index or slice.

Source code in pysfcgal/sfcgal.py
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
def __getitem__(self, key):
    """Get a vertex (or several) within the triangle, identified through an index
    or a slice.

    Raises an IndexError if the key is invalid for the triangle.

    Raises a TypeError if the key is neither an integer nor a valid slice.

    Parameters
    ----------
    key : int or slice
        Index (or slice) of the vertex(es) to recover.

    Returns
    -------
    Geometry or list of Geometry
        The vertex(es) at the specified index or slice.
    """
    length = 3
    if isinstance(key, int):
        if key + length < 0 or key >= length:
            raise IndexError("geometry sequence index out of range")
        elif key < 0:
            index = length + key
        else:
            index = key
        return self.__get_geometry_n(index)
    elif isinstance(key, slice):
        geoms = [
            self.__get_geometry_n(index) for index in range(*key.indices(length))
        ]
        return geoms
    else:
        raise TypeError(
            "geometry sequence indices must be\
                        integers or slices, not {}".format(
                key.__class__.__name__
            )
        )

__init__(coords=None)

Initialize the Triangle with the given coordinates.

Parameters:

Name Type Description Default
coords list of tuples

A list of coordinate tuples that define the vertices of the triangle. If None, initializes an empty triangle.

None
Source code in pysfcgal/sfcgal.py
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
def __init__(self, coords=None):
    """Initialize the Triangle with the given coordinates.

    Parameters
    ----------
    coords : list of tuples, optional
        A list of coordinate tuples that define the vertices of the triangle.
        If None, initializes an empty triangle.
    """
    self._geom = Triangle.sfcgal_geom_from_coordinates(coords)

__iter__()

Iterate over the vertices of the triangle.

Yields:

Type Description
Geometry

Each vertex of the triangle as a Geometry object.

Source code in pysfcgal/sfcgal.py
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
def __iter__(self):
    """Iterate over the vertices of the triangle.

    Yields
    ------
    Geometry
        Each vertex of the triangle as a Geometry object.
    """
    for n in range(3):
        yield Geometry.from_sfcgal_geometry(
            lib.sfcgal_triangle_vertex(self._geom, n),
            owned=False,
        )

sfcgal_geom_from_coordinates(coordinates) staticmethod

Instantiates a SFCGAL Triangle starting from a list of coordinates.

If the coordinates does not contain three items, an empty Triangle is returned

Parameters:

Name Type Description Default
coordinates list

Triangle coordinates.

required

Returns:

Type Description
_CDatabase

A pointer towards a SFCGAL Triangle

Source code in pysfcgal/sfcgal.py
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
@staticmethod
def sfcgal_geom_from_coordinates(coordinates: list) -> ffi.CData:
    """Instantiates a SFCGAL Triangle starting from a list of coordinates.

    If the coordinates does not contain three items, an empty Triangle is returned

    Parameters
    ----------
    coordinates : list
        Triangle coordinates.

    Returns
    -------
    _cffi_backend._CDatabase
        A pointer towards a SFCGAL Triangle
    """
    triangle = None
    if coordinates and len(coordinates) == 3:
        triangle = lib.sfcgal_triangle_create_from_points(
            Point.sfcgal_geom_from_coordinates(coordinates[0]),
            Point.sfcgal_geom_from_coordinates(coordinates[1]),
            Point.sfcgal_geom_from_coordinates(coordinates[2]),
        )
    else:
        triangle = lib.sfcgal_triangle_create()

    return triangle

to_coordinates()

Generates the coordinates of the Triangle.

Uses the iter property of the Triangle to iterate over vertices.

Returns:

Type Description
list

List of the vertex coordinates

Source code in pysfcgal/sfcgal.py
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
def to_coordinates(self):
    """Generates the coordinates of the Triangle.

    Uses the __iter__ property of the Triangle to iterate over vertices.

    Returns
    -------
    list
        List of the vertex coordinates
    """
    return [vertex.to_coordinates() for vertex in self]

to_polygon(wrapped=True)

Convert the triangle to a Polygon.

Parameters:

Name Type Description Default
wrapped bool

If True, wrap the result in a Geometry object. Defaults to True.

True

Returns:

Type Description
Polygon

A Polygon representation of the triangle.

Source code in pysfcgal/sfcgal.py
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
def to_polygon(self, wrapped: bool = True) -> Union[Polygon, ffi.CData]:
    """Convert the triangle to a Polygon.

    Parameters
    ----------
    wrapped : bool, optional
        If True, wrap the result in a Geometry object. Defaults to True.

    Returns
    -------
    Polygon
        A Polygon representation of the triangle.
    """
    exterior = lib.sfcgal_linestring_create()
    for point_idx in range(4):
        point = lib.sfcgal_triangle_vertex(self._geom, point_idx)
        lib.sfcgal_linestring_add_point(exterior, lib.sfcgal_geometry_clone(point))
    polygon = lib.sfcgal_polygon_create_from_exterior_ring(exterior)
    return Geometry.from_sfcgal_geometry(polygon) if wrapped else polygon

is_segment_in_coordsequence(coords, point_a, point_b)

Check if the segment defined by two points is in the coordinate sequence.

Parameters:

Name Type Description Default
coords list

A list of coordinate tuples.

required
point_a Point

The first point defining the segment.

required
point_b Point

The second point defining the segment.

required

Returns:

Type Description
bool

True if the segment is found in the coordinate sequence, False otherwise.

Source code in pysfcgal/sfcgal.py
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
def is_segment_in_coordsequence(coords: list, point_a: Point, point_b: Point) -> bool:
    """Check if the segment defined by two points is in the coordinate sequence.

    Parameters
    ----------
    coords : list
        A list of coordinate tuples.
    point_a : Point
        The first point defining the segment.
    point_b : Point
        The second point defining the segment.

    Returns
    -------
    bool
        True if the segment is found in the coordinate sequence, False otherwise.
    """
    for c1, c2 in zip(coords[1:], coords[:-1]):
        # (point_a, point_b) is in the coord sequence
        if c1 == (point_a.x, point_a.y) and c2 == (point_b.x, point_b.y):
            return True
        # (point_a, point_b) is in reverted coord sequence
        if c2 == (point_a.x, point_a.y) and c1 == (point_b.x, point_b.y):
            return True
    return False

sfcgal_full_version()

Returns the full version string of SFCGAL

Source code in pysfcgal/sfcgal.py
66
67
68
69
def sfcgal_full_version():
    """Returns the full version string of SFCGAL"""
    version = ffi.string(lib.sfcgal_full_version()).decode("utf-8")
    return version

sfcgal_version()

Returns the version string of SFCGAL

Source code in pysfcgal/sfcgal.py
60
61
62
63
def sfcgal_version():
    """Returns the version string of SFCGAL"""
    version = ffi.string(lib.sfcgal_version()).decode("utf-8")
    return version